《Bio-inspired asymmetric aldehyde arylations catalyzed by rhodium-cyclodextrin self-inclusion complexes》 was published in Organic & Biomolecular Chemistry in 2022. These research results belong to Tsuda, Susumu; Asahi, Kaoru; Takahashi, Ryota; Yamauchi, Hiroki; Ueda, Ryoji; Iwasaki, Takanori; Fujiwara, Shin-ichi; Kambe, Nobuaki. Safety of (3-Chlorophenyl)(phenyl)methanol The article mentions the following:
Chiral aralkyl alcs. RCH(OH)Ar1 were prepared by asym. arylation of aldehydes RCHO (R = substituted Ph, 2-naphthyl, 2-furyl, Bu) with arylboronic acids Ar1B(OH)2 (Ar1 = substituted P, 2-naphthyl, benzodioxolyl) catalyzed by in situ-formed rhodium self-inclusion NHC-cyclodextrin conjugated complexes. Reaction of 6-O-tosyl-substituted α- and γ-cyclodextrins with 1-Me and 1-mesityl-substituted imidazoles afforded imidazolium proligands Im-CD (L1-L4), which, upon reaction with Rh2(OAc)4 catalyze asym. arylation of the aldehydes RCHO. Transition-metal catalysts are powerful tools for carbon-carbon bond-forming reactions that are difficult to achieve using native enzymes. Enzymes that exhibit inherent selectivities and reactivities through host-guest interactions have inspired widespread interest in incorporating enzymic behavior into transition-metal catalytic systems that highly efficiently produce enantiopure compounds Nevertheless, bio-inspired transition-metal catalysts that are highly enantioselective and reactive have rarely been reported. In this study, we applied γ-cyclodextrin-imidazolium salts to the rhodium-catalyzed asym. arylations of aldehydes. The method exhibits wide substrate scope and the corresponding arylcarbinols are obtained in excellent yields under optimized conditions, with enantiomeric excesses of up to 96% observed Kinetic and competition experiments revealed that self-inclusion of the Rh complex contributes to the high enantioselectivity and reactivity achieved by this catalytic system. Thus, this bio-inspired self-inclusion strategy is promising for the development of highly enantioselective and reactive transition-metal catalysts for asym. carbon-carbon bond formation. The experimental process involved the reaction of (3-Chlorophenyl)(phenyl)methanol(cas: 63012-03-3Safety of (3-Chlorophenyl)(phenyl)methanol)
(3-Chlorophenyl)(phenyl)methanol(cas: 63012-03-3) belongs to hydroxy-containing compounds. Hydroxy groups participate in the dehydration reactions that link simple biological molecules into long chains. The joining of a fatty acid to glycerol to form a triacylglycerol removes the −OH from the carboxy end of the fatty acid.Safety of (3-Chlorophenyl)(phenyl)methanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts