Noroozi, Javad; Smith, William R. published their research in Journal of Chemical Information and Modeling in 2021. The article was titled 《Force-Field-Based Computational Study of the Thermodynamics of a Large Set of Aqueous Alkanolamine Solvents for Post-Combustion CO2 Capture》.Related Products of 534-03-2 The article contains the following contents:
The ability to predict the thermodn. properties of amine species in CO2-loaded aqueous solutions, including their deprotonation (pKa) and carbamate to bicarbonate reversion (pKc) equilibrium constants and their corresponding standard reaction enthalpies, is of critical importance for the design of improved carbon capture solvents. In this study, we used isocoulombic forms of both reactions to determine these quantities for a large set of aqueous alkanolamine solvent systems. Our hybrid approach involves using classical mol. dynamics simulations with the general amber force field (GAFF) and semi-empirical AM1-BCC charges (GAFF/AM1-BCC) in the solution phase, combined with high-level composite quantum chem. ideal-gas calculations We first determined a new force field (FF) for the hydronium ion (H3O+) by matching to the single exptl. pKa data point for the well-known monoethanolamine system at 298.15 K. We then used this FF to predict the pKa values for 76 other amines at 298.15 K and for all 77 amines at elevated temperatures Addnl., we indirectly relate the H3O+ hydration free energy to that of H+ and provide expressions for intrinsic hydration free energy and enthalpy of the proton. Using the derived H3O+ FF, we predicted the pKa values of a diverse set of alkanolamines with an overall average absolute deviation of less than 0.72 pKa units. Furthermore, the derived H3O+ FF is able to predict the protonation enthalpy of these amines when used with the GAFF. We also predicted the carbamate reversion constants of the primary and secondary amine species in the data set and their corresponding standard heats of reaction, which we compared with the scarcely available exptl. data, which are often subject to significant uncertainty. Finally, we also described the influence of electronic and steric effects of different mol. fragments/groups on the stabilities of the carbamates. In the experimental materials used by the author, we found 2-Aminopropane-1,3-diol(cas: 534-03-2Related Products of 534-03-2)
2-Aminopropane-1,3-diol(cas: 534-03-2) belongs to anime. To avoid the problem of multiple alkylation, methods have been devised for “blocking” substitution so that only one alkyl group is introduced. The Gabriel synthesis is one such method; it utilizes phthalimide, C6H4(CO)2NH, whose one acidic hydrogen atom has been removed upon the addition of a base such as KOH to form a salt.Related Products of 534-03-2
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts