Song, Wen-Juan et al. published their research in Food Research International in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C8H16O

Production of cultured fat with peanut wire-drawing protein scaffold and quality evaluation based on texture and volatile compounds analysis was written by Song, Wen-Juan;Liu, Pei-Pei;Zheng, Yan-Yan;Meng, Zi-Qing;Zhu, Hao-Zhe;Tang, Chang-Bo;Li, Hui-Xia;Ding, Shi-Jie;Zhou, Guang-Hong. And the article was included in Food Research International in 2022.COA of Formula: C8H16O This article mentions the following:

Cultured meat is an emergent technol. that cultivates cells in three-dimensional scaffolds to generate tissue for consumption. Fat makes an important contribution to the flavor and texture of traditional meat, but there are few reports on cultured fat. Here, we demonstrated the construction of cultured fat by inoculating porcine adipose-derived mesenchymal stem cell (ADSC) on peanut wire-drawing protein (PWP) scaffolds. First, we demonstrated that basic fibroblast growth factor (bFGF) promoted cell proliferation and maintained adipogenic differentiation ability. Then, we generated cultured fat and found that cultured fat decreased the texture of PWP scaffolds. Moreover, 43 volatile compounds were detected by headspace gas chromatog.-ion mobility spectrometry (GC-IMS), of which 17 volatile compounds showed no significant differences between cultured fat and porcine s.c. adipose tissue (pSAT), which indicated that cultured fat and pSAT had certain similarities. Collectively, this research has great promise for improving the quality of cultured meat. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4COA of Formula: C8H16O).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C8H16O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Macchione, Micaela A. et al. published their research in Soft Matter in 2019 | CAS: 109-17-1

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C16H26O7

Dual-responsive nanogels based on oligo(ethylene glycol) methacrylates and acidic co-monomers was written by Macchione, Micaela A.;Sacarelli, M. Florencia;Racca, Ana C.;Biglione, Catalina;Panzetta-Dutari, Graciela M.;Strumia, Miriam C.. And the article was included in Soft Matter in 2019.Formula: C16H26O7 This article mentions the following:

Ethylene glycol-based nanogels (NGs) have demonstrated their potential for the development of next-generation formulations for biomedical applications due to their interesting properties. In this work, monodispersed NGs based on oligo(ethylene glycol) methacrylates (OEG) were synthesized through free radical precipitation/dispersion polymerization assisted by ultrasonication. Di(ethylene glycol)methyl ether methacrylate (DEGMA) and oligo(ethylene glycol) methacrylate (OEGMA; Mn 475 g mol-1) were used as the main monomers, acrylic acid (AA) or itaconic acid (IA) as co-monomers (OEG-co-AA and OEG-co-IA, resp.) and tetraethylene glycol dimethacrylate (TEGDMA) as crosslinker. The physicochem. properties of OEG-co-AA and OEG-co-IA NGs were studied including hydrodynamic diameter, poly-dispersity index, zeta potential and pH/temperature responsiveness. Samples with 4 mol% of both AA and IA showed nanometric sizes. Regarding their thermo-responsiveness, unexpected differences between NGs with AA or with IA were observed Besides, NGs did not impair the cell viability of a breast tumor cell line even when high concentrations were added to the culture medium. The properties of the synthesized NGs showed that either NGs with 4% AA or with 4% IA are outstanding candidates for biomedical applications. In the experiment, the researchers used many compounds, for example, ((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1Formula: C16H26O7).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) bis(2-methylacrylate) (cas: 109-17-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Formula: C16H26O7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Cheng, Xin et al. published their research in Phytochemical Analysis in 2022 | CAS: 137-08-6

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.COA of Formula: C18H32CaN2O10

Qualitative and quantitative analysis of the major components in Qinghao Biejia decoction by UPLC-Orbitrap Fusion-MS/MS and UPLC-QQQ-MS/MS and evaluation of their antibacterial activities was written by Cheng, Xin;Li, Biao-Ping;Han, Zhong-Xiao;Zhang, Feng-Lin;Jiang, Zhi-Rui;Yang, Jia-Shun;Luo, Qi-Zhi;Tang, Ling. And the article was included in Phytochemical Analysis in 2022.COA of Formula: C18H32CaN2O10 This article mentions the following:

In the present study, the chem. components of Qinghao Biejia decoction (QBD) were qual. and quant. analyzed using UPLC-Orbitrap Fusion-MS/MS and UPLC-QQQ-MS/MS techniques, followed by identification of each components origin and evaluation of the antibacterial activity of QBD and its components. High-resolution mass spectrometry was used to obtain information on the precise mol. weight, retention time, and fragmentation ion peaks of the compounds used to identify the components of QBD and establish a method for their quantification. In vitro assays including determination of the minimal inhibitory concentration and growth curves were used to assess the antibacterial activity of QBD and its components. A total of 39 components, including fatty acids, phenolic acids, amino acids, flavonoids, coumarins, terpenoids, and alkaloids, were identified by UPLC-Orbitrap Fusion-MS/MS. A high-performance anal. method was also established to quantify 12 components of QBD. The content of mangiferin was relatively high (estimated to be 814μg/g). The results of the antibacterial assays indicated that mangiferin exhibits antibacterial effects against two strains causing respiratory tract infections. The present study suggests that mangiferin may serve as a natural compound which shows high antibacterial activity. The results can aid the discovery and anal. of the active antimicrobial components present in QBD and further provide a reference for quality assessment of multi-component herbal prescriptions. In the experiment, the researchers used many compounds, for example, Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6COA of Formula: C18H32CaN2O10).

Calcium (R)-3-(2,4-dihydroxy-3,3-dimethylbutanamido)propanoate (cas: 137-08-6) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.COA of Formula: C18H32CaN2O10

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Isagulyants, V. I. et al. published their research in Tr., Mosk. Inst. Neftekhim. iGaz. Prom. in 1964 | CAS: 2451-01-6

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Formula: C10H22O3

Dehydration of terpin hydrate in the presence of various ion-exchange resins was written by Isagulyants, V. I.;Fedorova, R. I.. And the article was included in Tr., Mosk. Inst. Neftekhim. iGaz. Prom. in 1964.Formula: C10H22O3 This article mentions the following:

During dehydration of terpin hydrate in the presence of cation exchange KU-2 (2%) as catalyst, dl-α-terpineol (I) was obtained in 62% yield. Cineole was not found. In the presence of cation exchanger KU-1 under the same conditions the yield of I was 37%. Best results were obtained in the presence of a sulfocarbon (10%) as catalyst. After 4 times the yield of I was 68% of the theoretical. In all cases I was distilled with water vapors as soon as it was formed to avoid its further possible dehydration to hydrocarbons. In the experiment, the researchers used many compounds, for example, rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6Formula: C10H22O3).

rel-(1s,4s)-4-(2-Hydroxypropan-2-yl)-1-methylcyclohexanol hydrate (cas: 2451-01-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Formula: C10H22O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Wang, Jilei et al. published their research in Journal of Polymer Science, Part A: Polymer Chemistry in 2017 | CAS: 60463-12-9

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Electric Literature of C7H7NO4

NIR light and enzyme dual stimuli-responsive amphiphilic diblock copolymer assemblies was written by Wang, Jilei;Wu, Bing;Li, Shang;He, Yaning. And the article was included in Journal of Polymer Science, Part A: Polymer Chemistry in 2017.Electric Literature of C7H7NO4 This article mentions the following:

Using atom transfer radical polymerization (ATRP) and macromol. azo coupling reaction, both o-nitrobenzyl (ONB) group and azobenzene group were efficiently incorporated into the center of the amphiphilic diblock copolymer chain. The prepared diblock copolymer was well characterized by UV-vis, 1H NMR, and GPC methods. Self-assembly of the amphiphilic copolymer in selected solvents can result in uniform self-assembly aggregates. In the presence of external stimuli [upconversion nanoparticles (UCNPs)/NIR light or enzyme], the amphiphilic diblock copolymer chain could be broken by the cleavage of ONB or azobenzene group, which would lead to the disruption of the self-assembly aggregates. This photo- and enzyme-triggered disruption process was proved by using transmission electron microscopy (TEM) and GPC method. Fluorescence emission spectra measurements indicated that the release of Nile red, a hydrophobic dye, encapsulated by the self-assembly aggregates, could be successfully realized under the NIR light and enzyme stimuli. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017. In the experiment, the researchers used many compounds, for example, 3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9Electric Literature of C7H7NO4).

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Electric Literature of C7H7NO4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Sahoo, Prasanta Kumar et al. published their research in Journal of Cancer Therapy in 2010 | CAS: 59960-32-6

2-(3-(Hydroxy(phenyl)methyl)phenyl)propanoic acid (cas: 59960-32-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.HPLC of Formula: 59960-32-6

Cytostatic activity of some novel amidocarbamate derivatives of ketoprofen was written by Sahoo, Prasanta Kumar;Behera, Pritishova. And the article was included in Journal of Cancer Therapy in 2010.HPLC of Formula: 59960-32-6 This article mentions the following:

A series of novel ketoprofen derivatives bearing both amide and carbamate functionalities were prepared using benzotriazole. Selective reduction of ketoprofen produced 3-(HOCHPh)C6H4CHMeCO2H, which reacts with one or two moles of 1-benzotriazolecarboxylic acid chloride to give the mono- and bis(benzotriazole) derivatives, the latter being aminated to give the title products. Antioxidative screenings revealed that the prepared compounds possess excellent lipid peroxidation inhibition at 0.1 mM concentration 3-(RCO2CHPh)C6H4CHMeCOR [R = 1-benzotriazolyl, NHCH2Ph] also showed high soybean lipoxygenase inhibition activity, whereas the amidocarbamate derivatives of ketoprofen showed only weak reducing activity against 1,1-diphenyl-2-picrylhydrazyl radicals. No selective effects were noted for the tested compounds against a broad variety of DNA and RNA viruses. The majority of the compounds show IC50 values around 10-25 μM, pointing to a relatively minor role of the R substituents on the core structure for cytostatic activity, as long as a bulky lipophilic (cyclic) entity is present. Also, the presence of the amide groups might play an important role to eventually exert cytostatic potential. In the experiment, the researchers used many compounds, for example, 2-(3-(Hydroxy(phenyl)methyl)phenyl)propanoic acid (cas: 59960-32-6HPLC of Formula: 59960-32-6).

2-(3-(Hydroxy(phenyl)methyl)phenyl)propanoic acid (cas: 59960-32-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.HPLC of Formula: 59960-32-6

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Rui, Hailong et al. published their research in Angewandte Chemie, International Edition in 2021 | CAS: 1122-71-0

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.HPLC of Formula: 1122-71-0

Stable Dye-Sensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand was written by Rui, Hailong;Shen, Junyu;Yu, Ze;Li, Lihua;Han, Hongxian;Sun, Licheng. And the article was included in Angewandte Chemie, International Edition in 2021.HPLC of Formula: 1122-71-0 This article mentions the following:

In recent years, copper redox mediators have attracted growing interest in dye-sensitized solar cells (DSCs). However, experiments revealed that ubiquitously used Lewis-base additives in the electrolytes coordinate to the CuII species, which restricts further enhancement of device performance and stability. We report the application of copper complexes endowed with diamine-tripyridine pentadentate ligands, [Cu(tpe)]2+/+ (tpe=N-benzyl-N,N,N-tris(pyridin-2-ylmethyl)ethylenediamine) and [Cu(tme)]2+/+ (tme=N-benzyl-N,N,N-tris(6-methylpyridin-2-ylmethyl)ethylenediamine), as redox mediators in DSCs. Exptl. measurements demonstrate that the coordination environment of Cu(II) complexes with pentadentate ligands remains unchanged in the presence of TBP, which is in stark contrast to the state-of-the-art bipyridyl counterpart. DSCs based on [Cu(tme)]2+/+ complexes exhibit an excellent long-term stability and maintain more than 90 % of the initial efficiency after 400 h under continuous illumination, which outperform the reference devices incorporating the bipyridyl counterpart (less than 80 %) under identical conditions. In the experiment, the researchers used many compounds, for example, 6-Methyl-2-pyridinemethanol (cas: 1122-71-0HPLC of Formula: 1122-71-0).

6-Methyl-2-pyridinemethanol (cas: 1122-71-0) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.HPLC of Formula: 1122-71-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xiao, Naiyong et al. published their research in Food Research International in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: Oct-1-en-3-ol

Evaluation of aroma characteristics in grass carp mince as affected by different washing processes using an E-nose, HS-SPME-GC-MS, HS-GC-IMS, and sensory analysis was written by Xiao, Naiyong;Xu, Huiya;Jiang, Xin;Sun, Tongtong;Luo, Yixuan;Shi, Wenzheng. And the article was included in Food Research International in 2022.Recommanded Product: Oct-1-en-3-ol This article mentions the following:

The aroma characteristics of grass carp mince washed in four processes were analyzed via electronic nose (E-nose), headspace solid-phase microextraction-gas chromatog.-mass spectrometry (HS-SPME-GC-MS), headspace gas chromatog.-ion mobility spectrometry (HS-GC-IMS), and sensory anal. techniques. Significant differences were revealed in the E-nose and sensory anal. results of the aroma characteristics of grass carp mince samples washed via different washing processes, while fifty-seven volatile compounds (thirteen aldehydes, eighteen alcs., two ketones, eighteen hydrocarbons, two aromatic compounds, one furan, and two other compounds) and twenty volatile compounds (five aldehydes, four ketones, six alcs., four esters, and one acid) were identified via HS-SPME-GC-MS and HS-GC-IMS of the Raw and washed grass carp mince samples, resp. All these techniques revealed that the types and relative contents of volatile compounds in the grass carp mince decreased significantly and differently after each of the four washing processes. Moreover, compared with the water and saline solution washing processes, washing with weak alk. solution processes exhibited the most significant removal effect on the volatile compounds of grass carp mince. Besides, the sensory anal. results also showed that weak alk. solution washing processes (washing twice with pure water and once with 0.3% sodium bicarbonate solution) may be most effective in removing fishy off-odor compounds and contributing to a better overall aroma profile in grass carp mince. The findings of this study may provide some basic knowledge for the rational screening of washing methods in the production of high-quality grass carp surimi. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Recommanded Product: Oct-1-en-3-ol).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Recommanded Product: Oct-1-en-3-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Xue, Benjing et al. published their research in Catalysis Communications in 2017 | CAS: 1777-82-8

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Computed Properties of C7H6Cl2O

Catalytic hydrosilylation of carbonyl compounds by hydrido thiophenolato iron(II) complexes was written by Xue, Benjing;Sun, Hongjian;Niu, Qingfen;Li, Xiaoyan;Fuhr, Olaf;Fenske, Dieter. And the article was included in Catalysis Communications in 2017.Computed Properties of C7H6Cl2O This article mentions the following:

The hydrosilylation of aldehydes RCHO (R = C6H5, 4-ClC6H5, furan-2-yl, etc.) and ketones R1C(O)R2 (R1 = C6H5, R2 = CH3; R1 = naphthalen-2-yl, R2 = CH3; R1R2 = -(CH2)5-) under mild conditions with hydrido thiophenolato iron(II) complexes I (R3 = H, 2-Si(CH3)3, 3-OCH3, 4-CH3) as catalysts and (EtO)3SiH as an efficient reducing agent in the yields up to 95% has been reported. Among them complex I (R3 = H) is the best catalyst. Complex I (R3 = H) could also be used as catalyst to reduce the α,β-unsaturated carbonyl compounds, e.g., 3-phenylprop-2-ynal selectively to the α,β-unsaturated alcs., e.g., 3-phenylprop-2-yn-1-ol in high yields. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8Computed Properties of C7H6Cl2O).

(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Computed Properties of C7H6Cl2O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Erturk, Erkan et al. published their research in ARKIVOC (Gainesville, FL, United States) in 2008 | CAS: 40571-86-6

Trans-2-(benzylamino)cyclohexanol (cas: 40571-86-6) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: Trans-2-(benzylamino)cyclohexanol

Iron(III) trifluoroacetate [Fe(O2CCF3)3] catalyzed epoxide opening with amines was written by Erturk, Erkan;Demir, Ayhan S.. And the article was included in ARKIVOC (Gainesville, FL, United States) in 2008.Recommanded Product: Trans-2-(benzylamino)cyclohexanol This article mentions the following:

Non-hygroscopic, non-toxic, and readily available iron(III) trifluoroacetate [Fe(O2CCF3)3] was found to be a highly regioselective catalyst for the ring opening of a wide variety of epoxides with diverse amines under solvent-free conditions. The stereospecific ring opening of (R)-styrene oxide with p-anisidine in the presence of 1 mol% of Fe(O2CCF3)3 gave 2-(p-methoxyphenylamino)-2-phenylethanol (5b) in enantiopure form (>99% ee) within 60 min. In the experiment, the researchers used many compounds, for example, Trans-2-(benzylamino)cyclohexanol (cas: 40571-86-6Recommanded Product: Trans-2-(benzylamino)cyclohexanol).

Trans-2-(benzylamino)cyclohexanol (cas: 40571-86-6) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: Trans-2-(benzylamino)cyclohexanol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts