Heterogeneous Catalysis for Oxidation of Alcohol via 1-Methyl-2-azaadamanane N-oxyl Immobilized on Magnetic Polystyrene Nanosphere was written by Guo, Xiaqun;Li, Meichao;Wang, Jianli;Li, Chunmei;Hu, Xinquan;Jin, Liqun;Sun, Nan;Hu, Baoxiang;Shen, Zhenlu. And the article was included in ChemistrySelect in 2022.SDS of cas: 873-76-7 This article mentions the following:
A highly promising heterogeneous strategy was describedn in which a catalytic amount of 1-methyl-2-azaadamanane N-oxyl immobilized on magnetic polystyrene nanosphere (1-Me-AZADO/MPNs) was used and a series of carbonyl compounds were obtained from various alcs. in 73-99% isolated yields and high selectivity (>99%) under Anelli conditions, thus offering a greener and more convenient methods in the synthesis of carbonyl compounds The attractive features of convenient magnetic separation (within seconds), good recyclability (up to 20 runs) and fast reaction rates (5-20 min) were very efficient to improve the utility of azaadamantane-type-nitroxyl radicals in the oxygenation. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7SDS of cas: 873-76-7).
(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.SDS of cas: 873-76-7
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts