Marshall, Tatianna et al. published their research in Colloids and Surfaces, A: Physicochemical and Engineering Aspects in 2022 | CAS: 149-32-6

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Formula: C4H10O4

Mechanisms of solvent separation using sugars and sugar alcohols was written by Marshall, Tatianna;Marangoni, Alejandro G.;Laredo, Thamara;Al-Abdul-Wahid, M. Sameer;Pensini, Erica. And the article was included in Colloids and Surfaces, A: Physicochemical and Engineering Aspects in 2022.Formula: C4H10O4 This article mentions the following:

This study uses sugars (dextrose, sucrose, ribose, fructose and mannose) and sugar alcs. (maltitol, erythritol, sorbitol, xylitol) to sep. water from THF (THF) and acetonitrile (AN). Bottle tests and NMR (NMR) show that above 0.25 M all sugars and sugar alcs. effectively sep. water from either THF or AN. At 0.5 M concentrations, maltitol and sucrose yield a non-negligible interfacial tension between AN and water, while the interfacial tension is negligible with all other compounds This indicates that while all compounds have similar separation effectiveness above a benchmark concentration, maltitol and sucrose (which are dimers) have a stronger effect on water structure compared to the other compounds tested (which are monomers). Attenuated Total Reflectance – Fourier Transform IR spectroscopy (ATR-FTIR) was used to explain solvent separation, based on the effect of sugars on hydrogen bonding (H-bonding) and on the nitrile band. The H-bonding peak was deconvolved into peaks representative of different water clusters, comprised of water mols. donating and accepting a different number of H-bonds. Principal component anal. (PCA) shows that single H-bond donors (SD) (at approx. 3200 cm-1) and double H-bond donor (DD) (at approx. 3400 cm-1) are most affected by maltitol and sucrose. All sugars tested induce a blue shift of the H-bonding of absorbance peaks for DD and SD, in either water or in mixtures of water-AN and water-THF. This indicates that they strengthen H-bonding in these clusters. The effect of all sugars is comparable when concentrations are expressed as OH equivalent Sugars increase the ratio between the amplitude A of SD relative to DD, and SD are most effective at structuring water. The difference between the ratio A(SD)/A(DD) after and before sugar addition is lowest in water (≈0.9), followed by THF-water mixtures (≈1.1) and AN-water mixtures (≈1.2). This indicates that solvents enhance the effect of sugars on H bonding. This is likely because sugars are not soluble in either THF or AN, which therefore excludes them and promotes their interactions with water. In turn, water-sugar H-bonding weakens interactions between AN-water or THF-water, leading to solvent separation The anal. of the nitrile band shows that sugars and sugar alcs. increase the relative amount of free nitrile, which is correlated to weaker interactions between AN and water. Maltitol and sucrose display approx. two times the relative amount of free nitrile compared to dextrose and erythritol. Our study confirms that sugars and sugar alcs. weaken solvent-water interactions, and reveals that they sep. solvents by increasing the proportion of SD relative to DD. In the experiment, the researchers used many compounds, for example, (2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6Formula: C4H10O4).

(2R,3S)-rel-Butane-1,2,3,4-tetraol (cas: 149-32-6) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Formula: C4H10O4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts