Zhou, Xiaoteng et al. published their research in RSC Advances in 2018 | CAS: 60463-12-9

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 60463-12-9

Controlled self-assembly into diverse stimuli-responsive microstructures: from microspheres to branched cylindrical micelles and vesicles was written by Zhou, Xiaoteng;Li, Lingxiao;Qin, He;Ning, Bo;Li, Junpei;Kan, Chengyou. And the article was included in RSC Advances in 2018.Application of 60463-12-9 This article mentions the following:

A series of amphiphilic PDMAEMA-SS-PCL chains with variable ratios of hydrophilic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) to hydrophobic poly(蔚-caprolactone) (PCL) were prepared via ring-opening polymerization, in which the two different moieties were linked via a disulfide bond with reduction responsiveness. After crosslinking by the photodegradable o-nitrobenzyl linkage, the amphiphilic chains could self-assemble into microspheres, branched cylindrical micelles and vesicles, which were responsive to the reduction agent DL-dithiothreitol and UV light irradiation through different mechanisms. In the experiment, the researchers used many compounds, for example, 3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9Application of 60463-12-9).

3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Application of 60463-12-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts