Iridium-Catalyzed Branch-Selective and Enantioselective Hydroalkenylation of α-Olefins through C-H Cleavage of Enamides was written by Sun, Xin;Lin, En-Ze;Li, Bi-Jie. And the article was included in Journal of the American Chemical Society in 2022.Name: (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol This article mentions the following:
Catalytic branch-selective hydrofunctionalization of feedstock α-olefins to form enantioenriched chiral compounds is a particularly attractive yet challenging transformation in asym. catalysis. Herein, an iridium-catalyzed asym. hydroalkenylation of α-olefins through directed C-H cleavage of enamides was reported. This atom-economical addition process is highly branch-selective and enantioselective, delivering trisubstituted alkenes with an allylic stereocenter. DFT calculations reveal the origin of regio- and enantioselectivity. In the experiment, the researchers used many compounds, for example, (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5Name: (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol).
(1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol (cas: 2216-51-5) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Name: (1R,2S,5R)-2-Isopropyl-5-methylcyclohexanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts