Silva, Gislaine C. et al. published their research in Sustainable Chemistry and Pharmacy in 2021 | CAS: 10083-24-6

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C14H12O4

Passion fruit seed extract enriched in piceatannol obtained by microwave-assisted extraction was written by Silva, Gislaine C.;Rodrigues, Rodney A. F.;Bottoli, Carla B. G.. And the article was included in Sustainable Chemistry and Pharmacy in 2021.Electric Literature of C14H12O4 This article mentions the following:

Apart from being food, passion fruit (Passiflora edulis Sims) offers seeds to be used as an oil source, and the residual seed cake from oil extraction contains piceatannol, a mol. that can prevent skin damages. In this work, microwave-assisted extraction (MAE) was evaluated as a technique for the preparation of piceatannol-rich seed cake extracts, and its performance was compared to the conventional Soxhlet extraction MAE and Soxhlet exhibited different selectivities for the seed cake compounds A sequential MAE at 87掳C, with 70% EtOH, for 30 min each cycle, provided a fine brown powder with 27.17 卤 0.9渭g of piceatannol per mg of the extract, while Soxhlet extraction for 120 min resulted in a dark lumpy extract containing 13.03 卤 0.4渭g mg-1. Thus, MAE was shown to be a promising alternative to produce a passion fruit seed extract for cosmetic purposes, adding value to a residue from the passion fruit chain by providing a faster extraction and a more color friendly and easier-to-handle product with higher levels of piceatannol in comparison to the conventional method. In the experiment, the researchers used many compounds, for example, (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6Electric Literature of C14H12O4).

(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.Electric Literature of C14H12O4

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts