Efficient chiral synthesis by Saccharomyces cerevisiae spore encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase in organic solvents was written by Rao, Jingxin;Zhang, Rongzhen;Liang, Hongbo;Gao, Xiao-Dong;Nakanishi, Hideki;Xu, Yan. And the article was included in Microbial Cell Factories in 2019.Safety of (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:
Background: Saccharomyces cerevisiae AN120 osw2Δ spores were used as a host with good resistance to unfavorable environment. This work was undertaken to develop a new yeast spore-encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase II and Bacillus sp. YX-1 glucose dehydrogenase for efficient chiral synthesis in organic solvents. Results: The spore microencapsulation of E228S/SCR II and GDH in S. cerevisiae AN120 osw2Δ catalyzed (R)-phenylethanol in a good yield with an excellent enantioselectivity (up to 99%) within 4 h. It presented good resistance and catalytic functions under extreme temperature and pH conditions. The encapsulation produced several chiral products with over 70% yield and over 99% enantioselectivity in Et acetate after being recycled for 4-6 times. It increased substrate concentration over threefold and reduced the reaction time two to threefolds compared to the recombinant Escherichia coli containing E228S and glucose dehydrogenase. Conclusions: This work first described sustainable enantioselective synthesis without exogenous cofactors in organic solvents using yeast spore-microencapsulation of coupled alc. dehydrogenases.[Figure not available: see fulltext.]. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Safety of (R)-1-(3-Chlorophenyl)ethanol).
(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Safety of (R)-1-(3-Chlorophenyl)ethanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts