Lu, Shiwei et al. published their research in Nature Communications in 2022 | CAS: 111-46-6

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 2,2′-Oxybis(ethan-1-ol)

Thiol-Yne click chemistry of acetylene-enabled macrocyclization was written by Lu, Shiwei;Wang, Zipeng;Zhu, Shifa. And the article was included in Nature Communications in 2022.Recommanded Product: 2,2′-Oxybis(ethan-1-ol) This article mentions the following:

Herein reported a photocatalyzed thiol-yne click reaction to forge diverse sulfur-containing macrocycles (up to 3,5-membered ring) and linear C2-linked 1,2-(S-S/S-P/S-N) functionalized mols., starting from the simplest alkyne, acetylene. Preliminary mechanistic experiments supported a visible light-mediated radical-polar crossover dihydrothiolation process. This operationally straightforward reaction was also amenable to the synthesis of organometallic complexes, bis-sulfoxide ligand and a pleuromutilin antibiotic drug Tiamulin, which provided a practical route to synthesize highly valued compounds from the feedstock acetylene gas. In the experiment, the researchers used many compounds, for example, 2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6Recommanded Product: 2,2′-Oxybis(ethan-1-ol)).

2,2′-Oxybis(ethan-1-ol) (cas: 111-46-6) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Recommanded Product: 2,2′-Oxybis(ethan-1-ol)

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts