Light-Responsive, Shape-Switchable Block Copolymer Particles was written by Lee, Junhyuk;Ku, Kang Hee;Kim, Jinwoo;Lee, Young Jun;Jang, Se Gyu;Kim, Bumjoon J.. And the article was included in Journal of the American Chemical Society in 2019.Application of 60463-12-9 This article mentions the following:
A robust strategy is developed for preparing light-responsive block copolymer (BCP) particles in which shape and color can be actively controlled with high spatial and temporal resolution The key to achieving light-responsive shape transitions of BCP particles is the design and synthesis of surfactants containing light-active groups (i.e., nitrobenzyl esters and coumarin esters) that modulate the amphiphilicity and interfacial activity of the surfactants in response to light of a specific wavelength. These light-induced changes in surfactant structure modify the surface and wetting properties of BCP particles, affording both shape and morphol. transitions of the particles, for example from spheres with an onion-like inner morphol. to prolate or oblate ellipsoids with axially stacked nanostructures. In particular, wavelength-selective shape transformation of the BCP particles can be achieved with a mixture of two light-active surfactants that respond to different wavelengths of light (i.e., 254 and 420 nm). Through the use of light-emitting, photoresponsive surfactants, light-induced changes in both color and shape are further demonstrated. Finally, to demonstrate the potential of the light-triggered shape control of BCP particles in patterning features with microscale resolution, the shape-switchable BCP particles are successfully integrated into a patterned, free-standing hydrogel film, which can be used as a portable, high-resolution display. In the experiment, the researchers used many compounds, for example, 3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9Application of 60463-12-9).
3-(Hydroxymethyl)-4-nitrophenol (cas: 60463-12-9) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Application of 60463-12-9
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts