Synthesis of 2,2-Disubstituted 2H-Chromenes through Carbon-Carbon Bond Formation Utilizing a [1,2]-Phospha-Brook Rearrangement under Broensted Base Catalysis was written by Kondoh, Azusa;Terada, Masahiro. And the article was included in Chemistry – A European Journal in 2022.Quality Control of (4-Chlorophenyl)methanol This article mentions the following:
A new methodol. for the synthesis of 2,2-disubstituted 2H-chromenes was developed by utilizing the [1,2]-phospha-Brook rearrangement under Broensted base catalysis. Phosphazene P2-tBu efficiently catalyzed the addition reaction of 4H-chromen-4-ols containing a diethoxyphosphoryl group with 伪,尾-unsaturated ketones, which involved the catalytic generation of a carbanion through the [1,2]-phospha-Brook rearrangement and subsequent conjugate addition at the 2-position to afford adducts possessing an alkenylphosphate moiety in a highly diastereoselective manner. Further transformation of the adducts based on a nickel-catalyzed cross-coupling reaction with arylzinc reagents provided densely functionalized 2,2-disubstituted 2H-chromenes. In the experiment, the researchers used many compounds, for example, (4-Chlorophenyl)methanol (cas: 873-76-7Quality Control of (4-Chlorophenyl)methanol).
(4-Chlorophenyl)methanol (cas: 873-76-7) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of (4-Chlorophenyl)methanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts