An iron variant of the Noyori hydrogenation catalyst for the asymmetric transfer hydrogenation of ketones was written by Huo, Shangfei;Wang, Qingwei;Zuo, Weiwei. And the article was included in Dalton Transactions in 2020.COA of Formula: C8H9ClO This article mentions the following:
The design of a new iron catalyst for the asym. transfer hydrogenation of ketones R1C(O)R2 [R1 = Ph, naphthalen-2-yl, 2,3-dihydro-1H-inden-5-yl, etc.; R2 = Me, Et, dimethoxymethyl, (dimethylamino)methyl] was reported. This type of iron catalyst combines the structural characteristics of the Noyori hydrogenation catalyst (an axially chiral 2,2′-bis(phosphino)-1,1′-binaphthyl fragment and the metal-ligand bifunctional motif) and an ene(amido) group SA,RP,SS/SA,RP,RR-I (Ar = Ph, 4-methoxyphenyl) that can activate the iron center. After activation by 8 equiv of potassium tert-butoxide, (SA,RP,SS)-I (Ar = Ph (II)) and (SA,RP,SS)-I (Ar = 4-methoxyphenyl) are active but nonenantioselective catalysts for the transfer hydrogenation of acetophenone and 伪,尾-unsaturated aldehydes R3CHO (R3 = 2,6-dimethylhepta-1,5-dien-1-yl, 2-phenylethenyl) are kept at room temperature in isopropanol. A maximum turnover number of 14480 was observed for (SA,RP,SS) (II) in the reduction of acetophenone. The right combination of the stereochem. of the axially chiral 2,2′-bis(phosphino)-1,1′-binaphthyl group and the carbon-centered chiral amine-imine moiety in (SA,RP,RR)-I (Ar = 4-methoxyphenyl) afforded an enantioselective catalyst for the preparation of chiral alcs. R1/R3CH(R2/H)OH with moderate to good yields and a broad functional group tolerance. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9COA of Formula: C8H9ClO).
(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.COA of Formula: C8H9ClO
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts