Gong, Yuxin et al. published their research in Angewandte Chemie, International Edition in 2022 | CAS: 68716-49-4

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Category: alcohols-buliding-blocks

Nickel-Catalyzed Thermal Redox Functionalization of C(sp3)-H Bonds with Carbon Electrophiles was written by Gong, Yuxin;Su, Lei;Zhu, Zhaodong;Ye, Yang;Gong, Hegui. And the article was included in Angewandte Chemie, International Edition in 2022.Category: alcohols-buliding-blocks This article mentions the following:

A Ni-catalyzed arylation and alkylation of C(sp3)-H bonds with organohalides to forge C(sp3)-C bonds by merging economical Zn and tBuOOtBu (DTBP) as the external reductant and oxidant was reported. The mild and easy-to-operate protocol enabled facile carbofunctionalization of N-/O-伪- and cyclohexane C-H bonds, and preparation of a few intermediates of bioactive compounds and drug derivatives Preliminary mechanistic studies implied addition of an alkyl radical to a NiII salt. In the experiment, the researchers used many compounds, for example, 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4Category: alcohols-buliding-blocks).

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (cas: 68716-49-4) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Category: alcohols-buliding-blocks

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts