Anti-Alzheimer鈥瞫 potential of different varieties of Piper betle leaves and molecular docking analyses of metabolites was written by Debnath, Mamita;Das, Susmita;Bhowmick, Shovonlal;Karak, Swagata;Saha, Achintya;De, Bratati. And the article was included in Free Radicals and Antioxidants in 2021.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol This article mentions the following:
Introduction: Acetylcholinesterase inhibitors are used to prevent symptoms of Alzheimer鈥瞫 disease which is initiated due to oxidative stress. Piper betle L. is a tropical evergreen perennial vine whose leaves are widely consumed as masticator in Asia and has medicinal properties. Objectives: The present study is aimed to investigate acetylcholinesterase inhibitory property of methanolic extracts of different varieties of Piper betle leaves and chemometrically identify different bioactive ingredients in vitro and in silico. Materials and Methods: Methanol extracts of the leaves collected in Feb. and Oct. from eight varieties of P. betle (Chhanchi, Bagerhati, Manikdanga, Kalibangla, Bangla, Ghanagete, Meetha and Haldi) were studied for acetylcholinesterase inhibitory properties. Chem. components were analyzed by Gas Chromatog. -Mass spectrometry and High Performance Thin Layer Chromatog. Active metabolites were identified chemometrically. The activities were proved in vitro and in silico. Results: All the extracts inhibited acetylcholinesterase. Statistical anal. suggested that several phenolic compounds were correlated to anti-cholinesterase activity. Piceatannol, hydroxychavicol, benzene-1,2,4-triol, and 4-methylcatechol are reported here to have such enzyme inhibitory properties. These four small mols. were further subjected to mol. docking anal. to explore their binding mechanism with the acetylcholinesterase enzyme. All the four small mols. are found to interact with the targeted enzyme in similar fashion like the mol. interactions observed for the standard inhibitor, Donepezil, at the active site of acetylcholiesterase. Conclusion: Thus, consumption of P. betle leaves may have a beneficial effect in the prevention and treatment of this neurodegenerative disease. In the experiment, the researchers used many compounds, for example, (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol).
(E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol (cas: 10083-24-6) belongs to alcohols. Under appropriate conditions, inorganic acids also react with alcohols to form esters. To form these esters, a wide variety of specialized reagents and conditions can be used. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Recommanded Product: (E)-4-(3,5-Dihydroxystyryl)benzene-1,2-diol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts