Fe(III) superoxide radicals in halloysite nanotubes for visible-light-assisted benzyl alcohol oxidation and oxidative C-C coupling of 2-naphthol was written by Baruah, Manash J.;Bora, Tonmoy J.;Dutta, Rupjyoti;Roy, Subhasish;Guha, Ankur Kanti;Bania, Kusum K.. And the article was included in Molecular Catalysis in 2021.Application of 1777-82-8 This article mentions the following:
Selective oxidation of benzyl alcs. to aldehydes and 2-naphthol to BINOL was achieved by activation of mol. oxygen (O2) and hydrogen peroxide (H2O2) over an iron-oxide catalyst embedded in halloysite nanotube. ESR spectroscopy (ESR), Raman and in situ FTIR spectroscopic anal. provided direct evidence for the involvement of superoxide radical bound FeIII species in the oxidation reaction. Both the anal. suggested the end-on binding of superoxide radical with FeIII-center. The stability of such radical bound FeIII-species in halloysite nanotube was analyzed through d. functional theory (DFT) calculations Results suggested that end-on (畏1) binding was favorable by 13.5 kcal/ mol than the side-on (畏2) binding mode. The formation of such reactive species was believed to play the crucial role in bringing the high selectivity in the catalytic oxidation of benzyl alc. and oxidative C-C coupling of 2-naphthol. UV-Vis spectroscopic studies on the oxidation of benzyl alc. suggested for the initial adsorption of substrate mol. on the catalyst surface followed by its interaction with FeIII -superoxide/hydroperoxide species generated upon photoirradiation with visible light in presence of O2. The presence of a suitable band gap 鈭?.14 eV enabled the catalyst to catalyze the reaction under visible light irradiation Both the reactions (benzyl alc. and 2-naphthol oxidation) were tested in presence of both O2 and H2O2 as oxidants at ambient temperature The influence of different parameters like rate of oxygen flow, amount of peroxide, nature of solvent, and catalyst amount on the conversion and selectivity of the reactions were studied to understand their role in the catalytic reactions. Successful oxidation of 2-naphthol with H2O2 as oxidant was a real success to overcome the limitations associated with this reaction using H2O2 as oxidant. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8Application of 1777-82-8).
(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. The oxygen atom of the strongly polarized O鈥旽 bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. A multistep synthesis may use Grignard-like reactions to form an alcohol with the desired carbon structure, followed by reactions to convert the hydroxyl group of the alcohol to the desired functionality.Application of 1777-82-8
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts