Design of improved catalysts for manganese catalysed hydrogenation towards practical earth abundant reduction catalysis was written by Widegren, Magnus B.;Clarke, Matthew L.. And the article was included in Catalysis Science & Technology in 2019.Safety of (R)-1-(3-Chlorophenyl)ethanol This article mentions the following:
Manganese catalysts derived from tridentate P,N,N ligands can be activated easily using weak bases for both ketone and ester hydrogenations. Kinetic studies indicate the ketone hydrogenations are 0th order in acetophenone, pos. order in hydrogen and 1st order in the catalyst. This implies that the rate determining step of the reaction was the activation of hydrogen. New ligand systems with varying donor strength were studied and it was possible to make the hydrogen activation significantly more efficient; a catalyst displaying around a 3-fold increase in initial turn-over frequencies for the hydrogenation of acetophenone relative to the parent system was discovered as a result of these kinetic investigations. Ester hydrogenations and ketone transfer hydrogenation (isopropanol as reductant) are first order for both the substrate and catalysts. Kinetic studies also gained insight into catalyst stability and identified a working range in which the catalyst is stable throughout the catalytic reaction (and a larger working range where high yields can still be achieved). The new more active catalyst, combining an electron-rich phosphine with an electron-rich pyridine is capable of hydrogenating acetophenone using as little as 0.01 mol% catalyst at 65 °C. In all, protocols for reduction of 21 ketones and 15 esters are described. In the experiment, the researchers used many compounds, for example, (R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9Safety of (R)-1-(3-Chlorophenyl)ethanol).
(R)-1-(3-Chlorophenyl)ethanol (cas: 120121-01-9) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Safety of (R)-1-(3-Chlorophenyl)ethanol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts