Effects of vaginal conjugated equine estrogens and ospemifene on the rat vaginal wall and lower urinary tract. was written by Maldonado, P Antonio;Montoya, T Ignacio;Acevedo, Jesus F;Keller, Patrick W;Word, R Ann. And the article was included in Biology of reproduction in 2017.Related Products of 128607-22-7 This article mentions the following:
Although the positive effects of vaginal estrogens and the selective estrogen receptor modulator, ospemifene (OS), on the vaginal epithelium are well recognized, less is known regarding the effects of these therapies on the lower urinary tract or vaginal muscularis. Clinical evidence suggests that vaginally administered estrogen may improve overactive bladder-related symptoms. The objective of this study was to compare the effects of OS, vaginal conjugated equine estrogens (CEE), or both on the vaginal wall and lower urinary tract in a rat model of menopause. Contractile force of the bladder neck, dome, and external urethral sphincter at optimal field stimulation did not differ significantly among treatment groups. Pharmacologic responses to atropine, carbachol, and potassium chloride were similar among groups. Vaginal epithelial thickness and differentiation were differentially regulated by CEE or OS. Ospemifene altered epithelial differentiation pathways in vaginal epithelium in a unique way, and these effects were additive with local CEE. Unless contraindicated, the beneficial effects of vaginal CEE on the vaginal wall outweigh those of OS. In the experiment, the researchers used many compounds, for example, (Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7Related Products of 128607-22-7).
(Z)-2-(4-(4-Chloro-1,2-diphenylbut-1-en-1-yl)phenoxy)ethan-1-ol (cas: 128607-22-7) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Related Products of 128607-22-7
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts