Yang, Yanqin et al. published their research in Food Chemistry in 2022 | CAS: 3391-86-4

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C8H16O

Insight into aroma dynamic changes during the whole manufacturing process of chestnut-like aroma green tea by combining GC-E-Nose, GC-IMS, and GC x GC-TOFMS was written by Yang, Yanqin;Qian, Michael C.;Deng, Yuliang;Yuan, Haibo;Jiang, Yongwen. And the article was included in Food Chemistry in 2022.Formula: C8H16O This article mentions the following:

Processing is the crucial factor for green tea aroma quality. In this study, the aroma dynamic changes throughout the manufacturing process of chestnut-like aroma green tea were investigated with gas chromatog. electronic nose (GC-E-Nose), gas chromatog.-ion mobility spectrometry (GC-IMS), and comprehensive two-dimensional gas chromatog. coupled to time-of-flight mass spectrometry (GC x GC-TOFMS). GC-IMS identified 33 volatile compounds while GC x GC-TOFMS identified 211 volatile components. Drying exerted the greatest influence on the volatile components of chestnut-like aroma green tea, and promoted the generation of heterocyclic compounds and sulfur compounds which were commonly generated via the Maillard reaction during the roasting stage. A large number of heterocyclic compounds such as 1-methyl-1H-pyrrole, pyrrole, methylpyrazine, furfural, 2-ethyl-5-methylpyrazine, 1-ethyl-1H-pyrrole-2-carboxaldehyde, and 3-acetylpyrrole were newly formed during the drying process. This study also validated the suitability of GC-E-Nose combined with GC-IMS and GC x GC-TOFMS for tracking the changes in volatile components of green tea throughout the manufacturing process. In the experiment, the researchers used many compounds, for example, Oct-1-en-3-ol (cas: 3391-86-4Formula: C8H16O).

Oct-1-en-3-ol (cas: 3391-86-4) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Formula: C8H16O

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts