An innovative synthesis of MoO3/Ag nanocomposite and catalytic application of immobilized molybdenum complex on cellulose extracting from Carthamus tinctorius was written by Sedri, Asma;Naeimi, Atena;Mohammadi, Sayed Zia. And the article was included in Carbohydrate Polymers in 2018.Computed Properties of C7H6Cl2O This article mentions the following:
Extracted microcrystalline cellulose from Carthamus tinctorius plant was oxidized by sodium metaperiodate and a novel molybdenum schiff base complex was supported on this natural cellulose (MoSMC@MC). Then, micro biopolymer silver/ immobilized molybenum complex on natural cellulose (Ag/MoSMC@MC) was synthesized at the presence of Sesbania sesba plant and charaterized by SEM, FT-IR, TGA, and EDAX. The catalytic efficiency of Ag/MoSMC@MC was exploited as a heterogenous bio-catalyst in the selective oxidation of alcs. The reactions were conducted using catalytic amounts of Ag/MoSMC@MC and t-BuOOH under solvent free conidtion to obtain desired aldehydes and ketones in high yields and excellent selectivity. Long-term stability and reproducibility in consecutive runs were feature of this microcomposite. At second part of this work, a novel strategy was reported to obtain green nanocomposites. Herein, addition of silver nitrate to plant solution led to the decomposition of the organic to inorganic polymer. As results, MoO3/Ag nanocomposite was prepared and its characteristics were investigated using TEM, and XRD to confirm the shape and structure. In the experiment, the researchers used many compounds, for example, (2,4-Dichlorophenyl)methanol (cas: 1777-82-8Computed Properties of C7H6Cl2O).
(2,4-Dichlorophenyl)methanol (cas: 1777-82-8) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Computed Properties of C7H6Cl2O
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts