Lee, Sang Hyup et al. published their research in Bulletin of the Korean Chemical Society in 2013 | CAS: 29364-29-2

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Related Products of 29364-29-2

Design and synthesis of new 4-alkylthio monocyclic β-lactams was written by Lee, Sang Hyup. And the article was included in Bulletin of the Korean Chemical Society in 2013.Related Products of 29364-29-2 This article mentions the following:

New types of monocyclic β-lactams constitute an important class of compounds due to their unique structures and natures. Here, the design and synthesis of new 4-alkylthio monocyclic β-lactams 2a and 3a are reported. Significantly, compounds 2a and 3a, while keeping a monocyclic system, were designed to contain all of the substructures provided by the cleavage of C(2)-C(3) bond in penicillins. Efficient synthetic pathways for compounds 2a and 3a were established based on two different strategies. Compound 2a was synthesized from raw materials, using 4-acetoxyazetidin-2-one as a key intermediate, through a ten-step synthetic sequence in 3% overall yield. Compound 3a was synthesized from potassium salt of penicillin G, using the degraded product 20 as a key intermediate, through a six-step synthetic sequence in 11% overall yield. 4-Alkylthioazetidin- 2-one derivatives, introduced could serve as valuable intermediates for the development of new monocyclic β-lactams. In the experiment, the researchers used many compounds, for example, Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2Related Products of 29364-29-2).

Sodium 2-methyl-2-propanethiolate (cas: 29364-29-2) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Related Products of 29364-29-2

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts