Exploiting CELLULOSE SYNTHASE (CESA) class specificity to probe cellulose microfibril biosynthesis was written by Kumar, Manoj;Mishra, Laxmi;Carr, Paul;Pilling, Michael;Gardner, Peter;Mansfield, Shawn D.;Turnera, Simon. And the article was included in Plant Physiology in 2018.Safety of (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate This article mentions the following:
Cellulose microfibrils are the basic units of cellulose in plants. The structure of these microfibrils is at least partly determined by the structure of the cellulose synthase complex. In higher plants, this complex is composed of 18 to 24 catalytic subunits known as CELLULOSE SYNTHASE A (CESA) proteins. Three different classes of CESA proteins are required for cellulose synthesis and for secondary cell wall cellulose biosynthesis these classes are represented by CESA4, CESA7, and CESA8. To probe the relationship between CESA proteins and microfibril structure, we created mutant cesa proteins that lack catalytic activity but retain sufficient structural integrity to allow assembly of the cellulose synthase complex. Using a series of Arabidopsis (Arabidopsis thaliana) mutants and genetic backgrounds, we found consistent differences in the ability of these mutant cesa proteins to complement the cellulose-deficient phenotype of the cesa null mutants. The best complementation was observed with catalytically inactive cesa4, while the equivalent mutation in cesa8 exhibited significantly lower levels of complementation. Using a variety of biophys. techniques, including solid-state NMR and Fourier transform IR microscopy, to study these mutant plants, we found evidence for changes in cellulose microfibril structure, but these changes largely correlated with cellulose content and reflected differences in the relative proportions of primary and secondary cell walls. Our results suggest that individual CESA classes have similar roles in determining cellulose microfibril structure, and it is likely that the different effects of mutating members of different CESA classes are the consequence of their different catalytic activity and their influence on the overall rate of cellulose synthesis. In the experiment, the researchers used many compounds, for example, (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0Safety of (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate).
(2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate (cas: 10030-85-0) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Safety of (2R,3R,4S,5S)-2,3,4,5-tetrahydroxyhexanal hydrate
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts