Pakrieva, E. published the artcileGreen Oxidation of n-octanol on Supported Nanogold Catalysts: Formation of Gold Active Sites under Combined Effect of Gold Content, Additive Nature and Redox Pretreatment, Safety of n-Octanol, the main research area is green oxidation n octanol supported nanogold catalyst gold pretreatment.
The combined influence of gold content (0.5 or 4 weight %), modifying additives (La or Ce oxides) and redox pretreatments (H2 or O2) on catalytic properties and formation of active sites of Au/TiO2 in the selective oxidation of n-octanol under mild conditions was studied. Samples were characterized by BET, XRD, EDX, ICP, TEM, STEM-HAADF, CO2-TPD, H2-TPR and XPS methods. The order of catalytic activity depended on the support nature for all treated samples, as follows: Au/La2O3/TiO2>Au/CeO2/TiO2>Au/TiO2. The catalytic activity enhanced with the increase of gold loading in the samples with hydrogen pretreatment, while after the oxidative pretreatment of the catalysts the opposite dependence of the activity with the gold content was found. This catalytic behavior was explained by a change in the surface concentration of monovalent gold ions, which seemed to be the active sites. The most active catalyst, 0.5 % Au/La2O3/TiO2, pretreated in oxidative atm., had the highest surface concentration of monovalent gold ions.
ChemCatChem published new progress about Binding energy. 111-87-5 belongs to class alcohols-buliding-blocks, name is n-Octanol, and the molecular formula is C8H18O, Safety of n-Octanol.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts