Zhang, Wen published the artcileElectrochemically driven cross-electrophile coupling of alkyl halides, Product Details of C15H21BO2, the publication is Nature (London, United Kingdom) (2022), 604(7905), 292-297, database is CAplus and MEDLINE.
Here, electrochem. were used to achieve the differential activation of alkyl halides e.g., 2-(2-bromopropan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (I) by exploiting their disparate electronic and steric properties. Specifically, the selective cathodic reduction of a more substituted alkyl halide (I) gives rise to a carbanion, which undergoes preferential coupling with a less substituted alkyl halide via bimol. nucleophilic substitution to forge a new carbon-carbon bond. This protocol enables efficient cross-electrophile coupling of a variety of functionalized and unactivated alkyl electrophiles in the absence of a transition metal catalyst, and shows improved chemoselectivity compared with existing methods.
Nature (London, United Kingdom) published new progress about 608534-44-7. 608534-44-7 belongs to alcohols-buliding-blocks, auxiliary class Other Aromatic,Boronic acid and ester,Boronate Esters,Boronic Acids,Boronic acid and ester, name is 2-(2,3-Dihydro-1H-inden-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and the molecular formula is C10H10O2, Product Details of C15H21BO2.
Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts