Diao, Xinyong published the artcileRational design of oligomeric MoO3 in SnO2 lattices for selective hydrodeoxygenation of lignin derivatives into monophenols, Name: 4-Propylphenol, the publication is Journal of Catalysis (2021), 234-251, database is CAplus.
Novel Mo-Sn bimetallic oxide catalysts with highly dispersed oligomeric MoO3 in SnO2 lattices, which were synthesized by the co-precipitation method and pretreated by anhydrous ethanol, were first employed in the hydrodeoxygenation of various lignin derivatives to produce monophenols with high activity and selectivity. In comparison with the pure α-MoO3 and the previous reported catalysts, the α-2Mo1Sn exhibited superior activity in the hydrodeoxygenation of guaiacol, with full conversion and 92.5% phenol yield at 300°C under 4 MPa initial H2 pressure in n-hexane for 4 h. According to comprehensive characterizations and catalytic measurements, the excellent performance of α-2Mo1Sn was ascribed to the formation of abundant Sn-O-Mo-OV interfacial sites, which possessed strong Mo-Sn interaction with enhanced surface area, electron-donating group binding ability, Lewis acidity, and redox ability. It was demonstrated that over the present α-2Mo1Sn catalyst system, the Sn-O-Mo-OV interfacial sites could greatly facilitate the adsorption and activation of Caromatic-OCH3 and Caromatic-CH3 bonds, and thus significantly promote the demethoxylation and demethylation reaction to produce phenol. This work figures out the rational design of MoO3-based catalyst and displays a clear potential for the selective hydrodeoxygenation of lignin derivatives into monophenols.
Journal of Catalysis published new progress about 645-56-7. 645-56-7 belongs to alcohols-buliding-blocks, auxiliary class Liquid Crystal &OLED Materials, name is 4-Propylphenol, and the molecular formula is C9H12O, Name: 4-Propylphenol.
Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts