Arnett, Edward M.’s team published research in Journal of Physical Organic Chemistry in 10 | CAS: 596-38-3

Journal of Physical Organic Chemistry published new progress about 596-38-3. 596-38-3 belongs to alcohols-buliding-blocks, auxiliary class Other Aromatic Heterocyclic,Benzene,Alcohol, name is 9-Phenyl-9H-xanthen-9-ol, and the molecular formula is C19H14O2, Synthetic Route of 596-38-3.

Arnett, Edward M. published the artcileTriarylmethanes and 9-arylxanthenes as prototypes amphihydric compounds for relating the stabilities of cations, anions and radicals by C-H bond cleavage and electron transfer, Synthetic Route of 596-38-3, the publication is Journal of Physical Organic Chemistry (1997), 10(7), 499-513, database is CAplus.

Thermodn. stability properties of 11 p-substituted trityl and seven 9-phenylxanthyl carbocations are reported in sulfolane and of their conjugate carbanions in DMSO. The cations are compared by calorimetric heats of hydride transfer from cyanoborohydride ion, their first and second reduction potentials, their pKR+s in aqueous sulfuric acid, 13C chem. shifts and free energies of methoxy exchange. Carbanions are compared by their heats and free energies (pKHA) of deprotonation and their first and second oxidation potentials. Radicals are compared by their oxidation and reduction potentials. Their bond dissociation energies are derived by alternative routes: from the carbocation and its reduction potential and from the carbanion and its oxidation potential. The various properties are correlated against each other and against appropriate Hammett-type substituent parameters. Correlations between the different measured properties reported here range from fair to excellent. Despite their importance as historic prototypes for the three trivalent oxidation states of carbon, trityl and xanthyl systems are atypical models for comparing transmission of electron demand in other series of carbocations, radicals or carbanions with significantly different structures. The 9-arylxanthyl series is especially poor because of its insensitivity to substituent effects. The effects of substituents on various properties which represent the stabilities of R+s correlate surprisingly well against those for corresponding Rs. Accordingly, compensating effects on the oxidation and reduction of a series of related R.s may lead to a nearly constant electron transfer energy and absolute hardness for the series. In contrast, the free energies for interconversion of the carbocations and carbanions which determine the gap between pKR+ and pKHA are very sensitive to structural change.

Journal of Physical Organic Chemistry published new progress about 596-38-3. 596-38-3 belongs to alcohols-buliding-blocks, auxiliary class Other Aromatic Heterocyclic,Benzene,Alcohol, name is 9-Phenyl-9H-xanthen-9-ol, and the molecular formula is C19H14O2, Synthetic Route of 596-38-3.

Referemce:
https://en.wikipedia.org/wiki/Alcohol,
Alcohols – Chemistry LibreTexts