Shaikh, Kashif Mohd’s team published research in Biotechnology for Biofuels in 2019-12-31 | CAS: 124-76-5

Biotechnology for Biofuels published new progress about Biofuels. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Application of rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol.

Shaikh, Kashif Mohd published the artcileMolecular profiling of an oleaginous trebouxiophycean alga Parachlorella kessleri subjected to nutrient deprivation for enhanced biofuel production, Application of rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, the main research area is Parachlorella biofuel lipid metabolism photosynthesis; Biofuels; Metabolomics; Microalgae; Nutrient deprivation; Parachlorella kessleri.

Background: Decreasing fossil fuels and its impact on global warming have led to an increasing demand for its replacement by sustainable renewable biofuels. Microalgae may offer a potential feedstock for renewable biofuels capable of converting atm. CO2 to substantial biomass and valuable biofuels, which is of great importance for the food and energy industries. Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amount of lipids under nutrient-deprived conditions. The present study aims to understand the metabolic imprints in order to elucidate the physiol. mechanisms of lipid accumulations in this microalga under nutrient deprivation. Results: Mol. profiles were obtained using gas chromatog.-mass spectrometry (GC-MS) of P. kessleri subjected to nutrient deprivation. Relative quantities of more than 60 metabolites were systematically compared in all the three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, and nitrogen assimilation. Nitrogen starvation seems to trigger the triacylglycerol (TAG) accumulation rapidly, while the microalga seems to tolerate phosphorous limitation, hence increasing both biomass and lipid content. The metabolomic and lipidomic profiles have identified a few common metabolites such as citric acid and 2-ketoglutaric acid which play significant role in diverting flux towards acetyl-CoA leading to accumulation of neutral lipids, whereas other mols. such as trehalose involve in cell growth regulation, when subjected to nutrient deprivation. Conclusions: Understanding the entire system through qual. (untargeted) metabolome approach in P. kessleri has led to identification of relevant metabolites involved in the biosynthesis and degradation of precursor mols. that may have potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.

Biotechnology for Biofuels published new progress about Biofuels. 124-76-5 belongs to class alcohols-buliding-blocks, name is rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol, and the molecular formula is C10H18O, Application of rel-(1R,2R,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts