Shen, Lingyun published the artcileSelective Transformation of Vicinal Glycols to α-Hydroxy Acetates in Water via a Dehydrogenation and Oxidization Relay Process by a Self-Supported Single-Site Iridium Catalyst, Application In Synthesis of 92093-23-7, the main research area is alpha hydroxy acetate preparation; vicinal glycol dehydrogenation oxidization relay process water; self supported single site iridium catalyst.
α-Hydroxy acids have attracted broad attention because of their prevalence in bioactive mols. and biodegradable polymers, but their conventional syntheses are usually restricted to aromatic substrates, especially, in a stepwise manner. Herein, the transformation of alkyl and aryl vicinal glycols to α-hydroxy acetates in water under the air atm. with the solid self-supported NHC-Ir single-site catalyst is reported. Both aliphatic and aromatic glycols are compatible with a much higher catalytic efficiency in the presence of this solid single-site catalyst than other viable mol. catalysts (93% vs <35%) because of the ""isolation effect"". Remarkably, this catalyst could be reused for 20 runs without an obvious loss in catalytic activity and selectivity. Control experiments and d. functional theory calculations reveal that the reaction firstly undergoes a dehydrogenation facilitated by the catalyst, and then it proceeds through an unexpected oxidization relay step by oxygen in the air, leading to the α-hydroxy acetate formation. This protocol can potentially contribute to the valorization of readily available and inexpensive diols. ACS Catalysis published new progress about Acetates Role: SPN (Synthetic Preparation), PREP (Preparation) (hydroxy). 92093-23-7 belongs to class alcohols-buliding-blocks, name is 1-(4-Bromophenyl)ethane-1,2-diol, and the molecular formula is C8H9BrO2, Application In Synthesis of 92093-23-7.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts