Lepe-Balsalobre, Esperanza published the artcileVolatile compounds from in vitro metabolism of seven Listeria monocytogenes isolates belonging to different clonal complexes, Category: alcohols-buliding-blocks, the main research area is Listeria monocytogenes volatile compound metabolism clonal complex; GC-MS; Listeria monocytogenes; VOCs; biomarkers; volatile compounds.
Microorganisms produce a wide variety of volatile organic compounds (VOCs) as products of their metabolism and some of them can be specific VOCs linked to the microorganism’s identity, which have proved to be helpful for the diagnosis of infection via odor fingerprinting. The aim of this study was to determine the VOCs produced and consumed to characterize the volatile metabolism of seven isolates of different clonal complexes (CCs) of Listeria monocytogenes. For this purpose, dichloromethane extracts from the thioglycolate broth medium were analyzed by gas chromatog. coupled to mass spectrometry (GC/MS). Also, multivariate analyses were applied to the data obtained. Results showed that all the isolates of L. monocytogenes produced de novo isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol, 3-(methylthio)-1-propanol, acetic acid, isobutyric acid, butanoic acid, and isovaleric acid. Significant differences were found among isolates for the production amount of these volatiles, which allowed their differentiation. Thus, CC4 (ST-219/CT-3650) and CC87 (ST-87/CT-4557) showed an active volatile compounds metabolism with high consumption nitrogen and sulfur compounds and production of alcs. and acids, and CC8 (ST-8/CT-8813) and CC3 (ST-3/CT-8722) presented a less active volatile metabolism Moreover, within the VOCs determined, huge differences were found in the production of butanol among the seven isolates analyzed, being probably a good biomarker to discriminate among isolates belonging to different CCs. Hence, the anal. of volatile profile generated by the growth of L. monocytogenes in vitro could be a useful tool to differentiate among CCs isolates.
Journal of Medical Microbiology published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Category: alcohols-buliding-blocks.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts