Lee, Sang Mi published the artcileDetermination of Key Volatile Compounds Related to Long-Term Fermentation of Soy Sauce, Synthetic Route of 505-10-2, the main research area is soy sauce volatile compound long term fermentation; long-term fermentation; solid phase microextraction; soy sauce; stir bar sorptive extraction; volatile compounds.
The changes of volatile compounds in soy sauce during long-term fermentation (12 mo) were investigated using solid-phase microextraction (SPME) and stir bar sorptive extraction (SBSE). A total of 144 and 129 compounds were identified in soy sauce with long-term fermentation by SPME and SBSE, resp. The contents of most compounds, such as acids, aldehydes, benzene and benzene derivatives, esters, lactones, pyrazines, pyrones, and pyrroles, showed a tendency to increase, whereas those of alcs. and ketones decreased according to long-term fermentation The initial fermentation stages were mainly associated with some alcs., ketones, and lactones, whereas the later stages were strongly associated with most esters, some phenols, benzene and benzene derivatives, and pyrroles. Moreover, the key volatile compounds associated with long-term fermentation in soy sauce samples were Et 3-methylbutanoate (Et isovalerate), Et pentanoate (Et valerate), 1-octen-3-yl acetate, 3-(methylthio)-1-propanol (methionol), Et benzoate, Et 2-phenylacetate, 1-(1H-pyrrol-2-yl)ethanone (2-acetylpyrrole), and 5-pentyl-2-oxolanone (γ-nonalactone). Practical Application : This study investigated changes of volatile compounds in soy sauce during long-term fermentation (12 mo) using solid-phase microextraction and stir bar sorptive extraction These results may help to predict th e effective contributors related to long-term fermentation of soy sauce and improve the quality of soy sauce during long-term fermentation
Journal of Food Science published new progress about Acids Role: BSU (Biological Study, Unclassified), BIOL (Biological Study). 505-10-2 belongs to class alcohols-buliding-blocks, name is 3-(Methylthio)propan-1-ol, and the molecular formula is C4H10OS, Synthetic Route of 505-10-2.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts