Catalytic depolymerization of the dealkaline lignin over Co-Mo-S catalysts in supercritical ethanol was written by Hao, Guojun;Liu, Hongying;Chang, Zhibing;Song, Kechen;Yang, Xin;Ma, Han;Wang, Wenjing. And the article was included in Biomass and Bioenergy in 2022.Computed Properties of C9H20O2 The following contents are mentioned in the article:
In this work, lignin depolymerization was examined over CoMo sulfide catalysts supported on different carriers in supercritical ethanol system. The temperature, time, MoS2 and carrier effects on the lignin depolymerization were investigated. 95.76% liquefaction yield with negligible char was achieved over Co-Mo-S/ZrO2 at 340° for 150 min. The liquid product was mainly composed of C4-C8 alcs., C4-C10 esters and C7-C10 aromatic compounds The synergistic effect of active sites and acid-base sites on support played an important role in lignin depolymerization Furthermore, the Co-Mo-S/ZrO2 catalyst is reusable with 8% loss in liquefaction yield after 5 cyclic runs. We believe that acid/base carriers or additives that can promote the medium to generate abundant free radicals or ions to replace external hydrogen pressure are one of the prospects for the design of depolymerization lignin catalysts. This study involved multiple reactions and reactants, such as 2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4Computed Properties of C9H20O2).
2-Butyl-2-ethylpropane-1,3-diol (cas: 115-84-4) belongs to alcohols. A strong base can deprotonate an alcohol to yield an alkoxide ion (R―O−). For example, sodamide (NaNH2), a very strong base, abstracts the hydrogen atom of an alcohol. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Computed Properties of C9H20O2
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts