Regulation of β-Disaccharide Accumulation by β-Glucosidase Inhibitors to Enhance Cellulase Production in Trichoderma reesei was written by Long, Tingting;Zhang, Peng;Yu, Jingze;Gao, Yushan;Ran, Xiaoqin;Li, Yonghao. And the article was included in Fermentation in 2022.Product Details of 367-93-1 The following contents are mentioned in the article:
Trichoderma reesei is a high-yield producer of cellulase for applications in lignocellulosic biomass conversion, but its cellulase production requires induction. A mixture of glucose and β-disaccharide has been demonstrated to achieve high-level cellulase production However, as inducers, β-disaccharides are prone to be hydrolyzed by β-glucosidase (BGL) during fermentation, therefore β-disaccharides need to be supplemented through feeding to overcome this problem. Here, miglitol, an β-glucosidase inhibitor, was investigated as a BGL inhibitor, and exhibited an IC50 value of 2.93μg/mL. The cellulase titer was more than two-fold when miglitol was added to the fermentation medium of T. reesei. This method was similar to the prokaryotic expression system using unmetabolized isopropyl-β-D-thiogalactopyranoside (IPTG) as the inducer instead of lactose to continuously induce gene expression. However, cellulase activity was not enhanced with BGL inhibition when lactose or cellulose was used as an inducer, which demonstrated that the transglycosidase activity of BGL is important for the inducible activity of lactose and cellulose. This novel method demonstrates potential in stimulating cellulase production and provides a promising system for T. reesei protein expression. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Product Details of 367-93-1).
(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Product Details of 367-93-1
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts