Heyde, Sophia A. H. et al. published their research in Communications Biology in 2021 | CAS: 367-93-1

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Tailoring the evolution of BL21(DE3) uncovers a key role for RNA stability in gene expression toxicity was written by Heyde, Sophia A. H.;Noerholm, Morten H. H.. And the article was included in Communications Biology in 2021.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol The following contents are mentioned in the article:

Gene expression toxicity is an important biol. phenomenon and a major bottleneck in biotechnol. Escherichia coli BL21(DE3) is the most popular choice for recombinant protein production, and various derivatives have been evolved or engineered to facilitate improved yield and tolerance to toxic genes. However, previous efforts to evolve BL21, such as the Walker strains C41 and C43, resulted only in decreased expression strength of the T7 system. This reveals little about the mechanisms at play and constitutes only marginal progress towards a generally higher producing cell factory. Here, we restrict the solution space for BL21(DE3) to evolve tolerance and isolate a mutant strain Evo21(DE3) with a truncation in the essential RNase E. This suggests that RNA stability plays a central role in gene expression toxicity. The evolved rne truncation is similar to a mutation previously engineered into the com. available BL21Star(DE3), which challenges the existing assumption that this strain is unsuitable for expressing toxic proteins. We isolated another dominant mutation in a presumed substrate binding site of RNase E that improves protein production further when provided as an auxiliary plasmid. This makes it easy to improve other BL21 variants and points to RNases as prime targets for cell factory optimization. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol).

(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Safety of (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts