Identification and quantification of oligomeric proanthocyanidins, alkaloids, and flavonoids in lotus seeds: A potentially rich source of bioactive compounds was written by Yu, YueTong;Wei, Xiaolu;Liu, Yan;Dong, Gangqiang;Hao, ChenYang;Zhang, Jing;Jiang, JinZhu;Cheng, JinTang;Liu, An;Chen, Sha. And the article was included in Food Chemistry in 2022.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:
Untargeted metabolomics was performed to study the profiles of 101 chems. in lotus seeds using ultrahigh-performance liquid chromatog.-photodiode array detection-high-resolution tandem mass spectrometry. Among them, 16 dimeric, 18 trimeric, and 4 tetrameric proanthocyanidins were theor. identified based on the d.p., and the number of linkages and the presence of two dihydroflavonols and three glycosylated alkaloids were determined for the first time. The proanthocyanidin, flavonoid, amino acid, and total compound contents were quantified, revealing decreases in their levels during maturation as well as a polymerization process formation of polymers from monomers during seed maturation. Interestingly, glycosylated alkaloids were only detected in seed cotyledons being highest at green-brown stage, whereas proanthocyanidins were present at a concentration of 8,226.19 ± 249.96μg/g (dry weight) in green-brown stage of seed coats. Our findings may provide insights into the utilization of lotus seeds as a functional food. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).
(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Grignard and organolithium reagents are powerful tools for organic synthesis, and the most common products of their reactions are alcohols.Application In Synthesis of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts