Enhanced degradation of bisphenol F in a porphyrin-MOF based visible-light system under high salinity conditions was written by Wang, Zhiwei;Li, Qian;Su, Ruidian;Lv, Guochun;Wang, Zhining;Gao, Baoyu;Zhou, Weizhi. And the article was included in Chemical Engineering Journal (Amsterdam, Netherlands) in 2022.COA of Formula: C13H12O2 The following contents are mentioned in the article:
The efficient degradation of organic contaminants in practical water treatment is a challenge for advanced oxidation processes via such as semiconductor photocatalysis due to interference from the inhibiting influence due to the reactions between radicals and coexisting anions in the actual water column. Herein, a porphyrinic zirconium metal-organic framework (PCN-223) is used in a visible light system to effectively decompose bisphenol F (BPF) in saline water. The PCN-223/visible-light system can effectively resist the influence of environmental coexisting anions and natural organic matter (NOM), thus demonstrating excellent performance in decomposing pollutants. Furthermore, the catalytic system is able to maintain stable contaminant degradation over a wide pH range and in five water matrixes. Coexisting anions promote the conductivity of electrons by forming ionic bonds with Zr, which enhances light-induced electron transfer under visible light. This work illustrates the mechanism and conditions under which porphyrin-MOF can resist high salt environments in photocatalysis, and provides a new perspective on the practical application of photocatalysis to overcome complex environmental disturbances. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8COA of Formula: C13H12O2).
4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. Because alcohols are easily synthesized and easily transformed into other compounds, they serve as important intermediates in organic synthesis. Secondary alcohols are easily oxidized without breaking carbon-carbon bonds only as far as the ketone stage. No further oxidation is seen except under very stringent conditions.COA of Formula: C13H12O2
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts