Overproduction, Purification, and Stability of the Functionally Active Human Carnitine Acetyl Transferase was written by Giudice, Deborah;Console, Lara;Arduini, Arduino;Indiveri, Cesare. And the article was included in Molecular Biotechnology in 2022.Computed Properties of C9H18O5S The following contents are mentioned in the article:
Abstract: Human Carnitine Acetyl Transferase (hCAT) reversibly catalyzes the transfer of the acetyl-moiety from acetyl-CoA to L-carnitine, modulating the acetyl-CoA/CoA ratio in mitochondria. Derangement of acetyl-CoA/CoA ratio leads to metabolic alterations that could result in the onset or worsening of pathol. states. Due to the importance of CAT as a pharmacol. target and to the European directive for reducing animal experimentation, we have pointed out a procedure to produce a recombinant, pure, and functional hCAT using the E. coli expression system. The cDNA encoding for the hCAT was cloned into the pH6EX3 vector. This construct was used to transform the E. coli Rosetta strain. The optimal conditions for the overexpression of the fully active hCAT include induction with a low concentration of IPTG (0.01 mM) and a low growth temperature (25 °C). The recombinant protein was purified from bacterial homogenate by affinity chromatog. The pure hCAT is very stable in an aqueous solution, retaining full activity for at least two months if stored at – 20 °C. These results could be helpful for a broad set of functional studies on hCAT, including drug-design applications. This study involved multiple reactions and reactants, such as (2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1Computed Properties of C9H18O5S).
(2R,3R,4S,5R,6S)-2-(Hydroxymethyl)-6-(isopropylthio)tetrahydro-2H-pyran-3,4,5-triol (cas: 367-93-1) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. The most common reactions of alcohols can be classified as oxidation, dehydration, substitution, esterification, and reactions of alkoxides.Computed Properties of C9H18O5S
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts