Evaluation of Geum urbanum L. Extracts with Respect to Their Antimicrobial Potential was written by Bunse, Marek;Mailander, Lilo K.;Lorenz, Peter;Stintzing, Florian C.;Kammerer, Dietmar R.. And the article was included in Chemistry & Biodiversity in 2022.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol The following contents are mentioned in the article:
Preparations derived from roots and rhizomes of Geum urbanum L. are traditionally used for the treatment of ulcers and irritations of mucous membranes of the mouth, stomach, and intestinal tract. In complementary medicine, fermentation is one of the methods applied to recover plant extracts used for the production of such pharmaceutical preparations The present study was performed to characterize the secondary metabolites and to evaluate the antimicrobial potential of different G. urbanum root and rhizome extracts For this purpose, individual metabolites of fresh and fermented G. urbanum root and rhizome extracts were analyzed by HPLC-DAD-MSn and GC/MS. Among others, rare ellagitannin-sulfates could be characterized by LC/MSn. In addition, the antibacterial activity of various extracts of fresh and dried G. urbanum roots and rhizomes against Staphylococcus aureus (ATCC 6538) and Cutibacterium acnes (CP033842.1; FDAARGOS 503 chromosome) were assessed and compared to that of G. rivale. Furthermore, low- and high-mol. tannins were fractionated by column chromatog., demonstrating the latter to exhibit highest antibacterial activity. This study involved multiple reactions and reactants, such as (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol).
(2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol (cas: 29106-49-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Converting an alcohol to an alkene requires removal of the hydroxyl group and a hydrogen atom on the neighbouring carbon atom. Dehydrations are most commonly carried out by warming the alcohol in the presence of a strong dehydrating acid, such as concentrated sulfuric acid.Quality Control of (2R,2’R,3R,3’R,4R)-2,2′-Bis(3,4-dihydroxyphenyl)-[4,8′-bichromane]-3,3′,5,5′,7,7′-hexaol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts