Modeling Pseudomonas aeruginosa inner plasma membrane in planktonic and biofilm modes was written by Yu, Yalun;Klauda, Jeffery B.. And the article was included in Journal of Chemical Physics in 2018.Product Details of 923-61-5 The following contents are mentioned in the article:
Pseudomonas aeruginosa changes its growth modes under different conditions. The bacteria in biofilm is more resistant to environmental stress compared to the planktonic mode of growth. The compositions of the inner plasma membrane for the two modes are noticeably different. Major lipid types are chosen from experiment to model the membrane in both modes of growth, and mol. dynamics simulation is used to study the properties of the membrane. The CHARMM36 lipid force field is used and tested against several exptl. results. Our models include lipids containing cyclopropane in the middle of the sn-2 tail, namely, 1-palmitoyl-2-cis-11,12-methylene-stearic-acid-sn-glycero-3-phosphoethanolamine and 1-palmitoyl-2-cis-11,12-methylene-stearic-acid-sn-glycero-3-phosphoglycerol. The PE:PG ratio for the two model membranes is close, but the fraction of lipids composed of long-chain and cyclopropane-containing fatty acids changes significantly, causing differences between the two models. Compared to previous model membranes built for Escherichia coli, the inner membrane of P. aeruginosa has a longer averaged lipid tail length and a higher percentage of PG lipids, which are responsible for the changes in membrane properties like membrane thickness and stiffness. Most importantly, the comparison to experiments shows good agreements and encourages the model’s use to study the behavior of proteins from P. aeruginosa associated with the membrane. (c) 2018 American Institute of Physics. This study involved multiple reactions and reactants, such as (2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5Product Details of 923-61-5).
(2R)-3-(((2-Aminoethoxy)(hydroxy)phosphoryl)oxy)propane-1,2-diyl dipalmitate (cas: 923-61-5) belongs to alcohols. Alkyl halides are often synthesized from alcohols, in effect substituting a halogen atom for the hydroxyl group. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Product Details of 923-61-5
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts