Cytotoxicity and mutagenicity of particulate matter from the open burning of pruning wastes was written by Vicente, Estela D.;Figueiredo, Daniela;Goncalves, Catia;Vicente, Ana;Lopes, Isabel;Oliveira, Helena;Alves, Celia A.. And the article was included in Air Quality, Atmosphere & Health in 2022.Reference of 620-92-8 The following contents are mentioned in the article:
Burning vegetative debris is a worldwide long-standing practice. The current study was designed to examine the cytotoxicity and mutagenicity of particulate matter with an aerodynamic diameter below 10 μm (PM10) released from the burning of pruning residues common in Portugal and other countries of the Mediterranean region. Field measurements were conducted to collect PM10 samples from open burning of vines, olive, willow and acacia pruning branches. To assess the cytotoxicity of the PM10 total organic extract, the A549 cell line, representative of the alveolar type II pneumocytes of the human lung, was used. The cytotoxicity was checked using two complementary methods: water-soluble tetrazolium (WST-8) test to evaluate the cell metabolic activity and lactate dehydrogenase (LDH) activity assay to assess the loss of cell membrane integrity. The mutagenicity of the PM10-bound polycyclic aromatic hydrocarbons (PAHs) was screened through the Ames test. PM10 organic extracts induced LDH release in a dose-dependent manner. Regarding the cellular metabolic activity, dose-dependency was lacking for the majority of the samples. Combined WST-8 and LDH data indicate that PM10 exposure induce a necrotic cell death pathway in which the cell membrane integrity is lost. Direct and indirect mutagenicity towards the TA98 Salmonella strain has been recorded for the PAH extracts of PM10 collected from combustion of vine and willow branches during the ignition/flaming combustion stage. Significant correlations were found between the cytotoxic responses (WST-8 and LDH) and the PM10 organic component. This study involved multiple reactions and reactants, such as 4,4′-Methylenediphenol (cas: 620-92-8Reference of 620-92-8).
4,4′-Methylenediphenol (cas: 620-92-8) belongs to alcohols. The oxygen atom of the strongly polarized O―H bond of an alcohol pulls electron density away from the hydrogen atom. This polarized hydrogen, which bears a partial positive charge, can form a hydrogen bond with a pair of nonbonding electrons on another oxygen atom. Alcohols may be oxidized to give ketones, aldehydes, and carboxylic acids. These functional groups are useful for further reactions. Oxidation of organic compounds generally increases the number of bonds from carbon to oxygen (or another electronegative element, such as a halogen), and it may decrease the number of bonds to hydrogen.Reference of 620-92-8
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts