Effect of Biocompatible Esters and Alcohols as Cosurfactants on Structure and Solubilization Behavior of the Zwitterionic Surfactant Tetradecyldimethylamine Oxide was written by Gradzielski, Michael;Horbaschek, Klaus;Deme, Bruno. And the article was included in Industrial & Engineering Chemistry Research in 2019.Computed Properties of C10H22O The following contents are mentioned in the article:
In this work, we compare the effect of different monoterpenoid alcs. that differ with respect to their number of double bonds and simple aromatic esters of variable mol. architecture as cosurfactants on the phase behavior of the zwitterionic surfactant tetradecyldimethylamine oxide (TDMAO) and its solubilization behavior, with respect to decane as a model paraffin oil. The esters are shown to be potent cosurfactants but require higher concentrations to achieve similar effects, with respect to structural changes and solubilization enhancement. Compared to the alcs., they solubilize somewhat smaller amounts of decane, do reduce the interfacial tension substantially less, and also do not form an isotropic phase of unilamellar vesicles (L4) but directly multilamellar vesicles (Lαl). A very interesting effect is the significance of the detailed mol. architecture of the esters, as Et benzoate and benzyl acetate, both having the same sum formula, differ significantly, with respect to their cosurfactant properties. However, all systems allow one to incorporate relatively large amounts of the oil. For the case of the esters, this always leads to the formation of oil-in-water (O/W) microemulsion droplets while the alcs. can build in relatively large amounts of oil within their vesicular structures. These findings show that these biofriendly cosurfactants allow to formulate structurally rather versatile systems and efficiently enhance oil solubility for the given surfactant system. This study involved multiple reactions and reactants, such as 3,7-Dimethyloctan-1-ol (cas: 106-21-8Computed Properties of C10H22O).
3,7-Dimethyloctan-1-ol (cas: 106-21-8) belongs to alcohols. Alcohols are among the most common organic compounds. They are used as sweeteners and in making perfumes, are valuable intermediates in the synthesis of other compounds, and are among the most abundantly produced organic chemicals in industry. Under carefully controlled conditions, simple alcohols can undergo intermolecular dehydration to give ethers. This reaction is effective only with methanol, ethanol, and other simple primary alcohols.Computed Properties of C10H22O
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts