Iron(III) Complexes of a Pyridoxal Schiff Base for Enhanced Cellular Uptake with Selectivity and Remarkable Photocytotoxicity was written by Basu, Uttara;Pant, Ila;Hussain, Akhtar;Kondaiah, Paturu;Chakravarty, Akhil R.. And the article was included in Inorganic Chemistry in 2015.Category: alcohols-buliding-blocks The following contents are mentioned in the article:
Fe(III) complexes of pyridoxal (vitamin B6, VB6) or salicylaldehyde Schiff bases and modified dipicolylamines, namely, [Fe(B)(L)](NO3) (1-5), where B is phenyl-N,N-bis((pyridin-2-yl)methyl)methanamine (phbpa in 1), (anthracen-9-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (anbpa in 2, 4) and (pyren-1-yl)-N,N-bis((pyridin-2-yl)methyl)methanamine (pybpa in 3, 5) (H2L1 is 3-hydroxy-5-(hydroxymethyl)-4-(((2-hydroxyphenyl)imino)methyl)-2-methylpyridine (1-3) and H2L2 is 2-[(2-hydroxyphenyl-imino)methyl]phenol), were prepared and their uptake in cancer cells and photocytotoxicity were studied. Complexes 4 and 5, having a nonpyridoxal Schiff base, were prepared to probe the role of the pyridoxal group in tumor targeting and cellular uptake. The PF6 salt (1a) of complex 1 is structurally characterized. The complexes have a distorted six-coordinate FeN4O2 core where the metal is in the +3 oxidation state with five unpaired electrons. The complexes display a ligand to metal charge transfer band near 520 and 420 nm from phenolate to the Fe(III) center. The photophys. properties of the complexes are explained from the time dependent d. functional theory calculations The redox active complexes show a quasi-reversible Fe(III)/Fe(II) response near -0.3 V vs. SCE. Complexes 2 and 3 exhibit remarkable photocytotoxicity in various cancer cells with IC50 values ranging from 0.4 to 5 μM with 10-fold lower dark toxicity. The cell death proceeded by the apoptotic pathway due to generation of reactive O species upon light exposure. The nonvitamin complexes 4 and 5 display 3-fold lower photocytotoxicity compared to their VB6 analogs, possibly due to preferential and faster uptake of the vitamin complexes in the cancer cells. Complexes 2 and 3 show significant uptake in the endoplasmic reticulum, while complexes 4 and 5 are distributed throughout the cells without any specific localization pattern. This study involved multiple reactions and reactants, such as 3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5Category: alcohols-buliding-blocks).
3-Hydroxy-5-(hydroxymethyl)-2-methylisonicotinaldehyde hydrochloride (cas: 65-22-5) belongs to alcohols. Similar to water, an alcohol can be pictured as having an sp3 hybridized tetrahedral oxygen atom with nonbonding pairs of electrons occupying two of the four sp3 hybrid orbitals. Tertiary alcohols cannot be oxidized at all without breaking carbon-carbon bonds, whereas primary alcohols can be oxidized to aldehydes or further oxidized to carboxylic acids.Category: alcohols-buliding-blocks
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts