In 2022,Sun, Kangkang; Shan, Hongbin; Ma, Rui; Wang, Peng; Neumann, Helfried; Lu, Guo-Ping; Beller, Matthias published an article in Chemical Science. The title of the article was ãCatalytic oxidative dehydrogenation of N-heterocycles with nitrogen/phosphorus co-doped porous carbon materialsã?Reference of Oxetan-3-ol The author mentioned the following in the article:
A metal-free oxidative dehydrogenation of N-heterocycles e.g., quinoline utilizing a nitrogen/phosphorus co-doped porous carbon (NPCH) catalyst was reported. The optimal material is robust against traditional poisoning agents and shows high antioxidant resistance. It exhibits good catalytic performance for the synthesis of various quinolines I (R1 = H, 5-Br, 6-OMe, 8-OH, etc.; R1 = H, 2-Me, 2-Ph, 3-Me, 4-Me), indoles II (R3 = H, 4-CN, 5-Me, 5-Cl, etc.; R4 = 2-Me, 3-Me, 3-COOMe), isoquinolines III (R5 = H, Me, Ph), and quinoxalins IV (R6 = H, Me, Ph; R7 = H, NO2) ‘on-water’ under air atm. The active sites in the NPCH catalyst are proposed to be phosphorus and nitrogen centers within the porous carbon network. In the experiment, the researchers used many compounds, for example, Oxetan-3-ol(cas: 7748-36-9Reference of Oxetan-3-ol)
Oxetan-3-ol(cas: 7748-36-9) is used as a reagent in the synthesis of 5-fluoro-4,6-dialkoxypyrimidine GPR119 agonists. It is also used as a reagent in the synthesis of cyclic sulfone hydroxyethylamines as potent and selective β-site APP-cleaving enzyme 1 (BACE1) inhibitors.Reference of Oxetan-3-ol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts