《Macrocycle synthesis strategy based on step-wise “”adding and reacting”” three components enables screening of large combinatorial libraries》 was written by Mothukuri, Ganesh K.; Kale, Sangram S.; Stenbratt, Carl L.; Zorzi, Alessandro; Vesin, Jonathan; Bortoli Chapalay, Julien; Deyle, Kaycie; Turcatti, Gerardo; Cendron, Laura; Angelini, Alessandro; Heinis, Christian. Recommanded Product: 4-Aminobutan-1-ol And the article was included in Chemical Science in 2020. The article conveys some information:
Macrocycles provide an attractive modality for drug development, but generating ligands for new targets is hampered by the limited availability of large macrocycle libraries. We have established a solution-phase macrocycle synthesis strategy in which three building blocks are coupled sequentially in efficient alkylation reactions that eliminate the need for product purification We demonstrate the power of the approach by combinatorially reacting 15 bromoacetamide-activated tripeptides, 42 amines, and 6 bis-electrophile cyclization linkers to generate a 3780-compound library with minimal effort. Screening against thrombin yielded a potent and selective inhibitor (Ki = 4.2 ± 0.8 nM) that efficiently blocked blood coagulation in human plasma. Structure-activity relationship and X-ray crystallog. anal. revealed that two of the three building blocks acted synergistically and underscored the importance of combinatorial screening in macrocycle development. The three-component library synthesis approach is general and offers a promising avenue to generate macrocycle ligands to other targets. The experimental process involved the reaction of 4-Aminobutan-1-ol(cas: 13325-10-5Recommanded Product: 4-Aminobutan-1-ol)
4-Aminobutan-1-ol(cas: 13325-10-5) is used in the synthesis of NSAIDs with anti-inflammatory properties. Also used in the synthesis of polyamine transport ligands with specificity against human cancers allowing easy access to specific cancer cells.Recommanded Product: 4-Aminobutan-1-ol
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts