Zhao, Zhimin team published research in Journal of Rare Earths in | 533-73-3

Electric Literature of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 533-73-3

Zhao, Zhimin;Liu, Jinjia;Sa, Gala;Xu, Aiju research published 《 Electronic properties and photodegradation ability of Nd-TiO2 for phenol》, the research content is summarized as follows. In this study, the photocatalytic activity of Nd-TiO2 photocatalysts obtained by common hydrothermal method was evaluated by practical experiments and theor. calculations based on d. functional theory (DFT). The synthesized photocatalysts were characterized by X-ray diffraction (XRD), N2 adsorption-desorption, Fourier transform IR spectroscopy (FT-IR), high resolution transmission electron microscopy (HRTEM), XPS, UV-Vis diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) to study their phys./chem. properties. At the same time, the photoelectronic performance was also investigated. The photodegradation ability of as-prepared photocatalysts and the effect of Nd doped amount and photocatalysts dosage were investigated by the photodegradation of phenol (30 mg/L) under 400 W metal halide lamp (UV-Vis). The effect of Nd on electronic properties of TiO2 and adsorption ability of phenol were discussed. Results show the red-shift wavelength of 0.5 mol%Nd-TiO2, indicating that its absorption capacity is stronger than pristine TiO2 in the same wavelength range. The result of DFT calculations demonstrates that the optical bandgap of Nd-TiO2 is profoundly reduced, thus the light absorption ability is promoted, which will be responsible for the enhanced photocatalytic performance of Nd-TiO2. 0.5 mol% Nd is an optimum value for photodegradation phenol, and phenol can be completely degraded by 0.5 mol%Nd-TiO2 for 210 min, the higher catalytic performance is derived from the efficient separation of e/h+ pairs. Moreover, the adsorption energy calculations of phenol on TiO2 (101) and Nd-TiO2 (101) demonstrate that the Nd doping can significantly enhance the adsorption ability of phenol on catalyst surfaces because of the formation of Nd-O bonds. At last, the stability measurement through four recycles exhibits that 0.5 mol%Nd-TiO2 possesses excellent stability.

Electric Literature of 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Zhen team published research in Environmental Pollution (Oxford, United Kingdom) in 2020 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Recommanded Product: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 647-42-7, formula is C8H5F13O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Recommanded Product: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Zhao, Zhen;Cheng, Xianghui;Hua, Xia;Jiang, Bin;Tian, Chongguo;Tang, Jianhui;Li, Qilu;Sun, Hongwen;Lin, Tian;Liao, Yuhong;Zhang, Gan research published 《 Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers》, the research content is summarized as follows. Per- and polyfluoroalkyl substances (PFASs) contamination in the Bohai Sea and its surrounding rivers has attracted considerable attention in recent years. However, few studies have been conducted regarding the distribution of PFASs in multiple environmental media and their distributions between the suspended particles and dissolved phases. In this study, surface water, surface sediment, and air samples were collected at the Bohai Sea to investigate the concentration and distribution of 39 targeted PFASs. Moreover, river water samples from 35 river estuaries were collected to estimate PFAS discharge fluxes to the Bohai Sea. The results showed that total ionic compound (∑ i-PFASs) concentrations ranged from 19.3 to 967 ng/L (mean 125 ± 152 ng/L) in the water and 0.70-4.13 ng/g dw (1.78 ± 0.76 ng/g) in surface sediment of the Bohai Sea, resp. In the estuaries, ∑ i-PFAS concentrations were ranged from 10.5 to 13500 ng/L (882 ± 2410 ng/L). In the air, ∑ PFAS (∑ i-PFASs + ∑ n-PFASs) concentrations ranged from 199 to 678 pg/m3 (462 ± 166 pg/m3). Perfluorooctanoic acid (PFOA) was the predominant compound in the seawater, sediment, and river water; in the air, 8:2 fluorotelomer alc. was predominant. Xiaoqing River discharged the largest ∑ i-PFAS flux to the Bohai Sea, which was estimated as 12,100 kg/y. Some alternatives, i.e., 6:2 fluorotelomer sulfonate acid (6:2 FTSA), hexafluoropropylene oxide dimer acid (HFPO-DA), and chlorinated 6:2 polyfluorinated ether sulfonic acid (Cl-6:2 PFESA), showed higher levels than or comparable concentrations to those of the C8 legacy PFASs in some sampling sites. The particle-derived distribution coefficient in seawater was higher than that in the river water. Using high resolution mass spectrometry, 29 nontarget emerging PFASs were found in 3 river water and 3 seawater samples. Further studies should be conducted to clarify the sources and ecotoxicol. effects of these emerging PFASs in the Bohai Sea area.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Recommanded Product: 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Yichao team published research in Tetrahedron Letters in 2013 | 7748-36-9

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Reference of 7748-36-9

In general, the hydroxyl group makes alcohols polar. 7748-36-9, formula is C3H6O2, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Reference of 7748-36-9

Zhao, Yichao;Wang, Wen;Li, Jian;Wang, Feng;Zheng, Xiufang;Yun, Hongying;Zhao, Weili;Dong, Xiaochun research published 《 FeCl3/pyridine: dual-activation in opening of epoxide with carboxylic acid under solvent free condition》, the research content is summarized as follows. Inexpensive, non-toxic, and readily available catalyst system FeCl3/pyridine was found to be highly efficient for the opening of a wide variety of epoxides with carboxylic acid under solvent free conditions.

7748-36-9, Oxetan-3-ol is a useful research compound. Its molecular formula is C3H6O2 and its molecular weight is 74.08 g/mol. The purity is usually 95%.
Oxetan-3-ol is a synthetic hydroxy compound with the chemical formula C6H12O3. It is an organic solvent that can be used in reactions involving vinyl alcohol and oxetane, such as ring-opening polymerization and cationic polymerization. Oxetan-3-ol has also been shown to react with ethyl bromoacetate to form the corresponding oxetane, which can be used as a bioisostere for chloropropane, a potential replacement for chlorofluorocarbons., Reference of 7748-36-9

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Wei-Cheng team published research in Journal of the American Chemical Society in 2022 | 72824-04-5

Product Details of C9H17BO2, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

In general, the hydroxyl group makes alcohols polar. 72824-04-5, formula is C9H17BO2, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Product Details of C9H17BO2

Zhao, Wei-Cheng;Li, Rui-Peng;Ma, Chao;Liao, Qi-Ying;Wang, Miao;He, Zhi-Tao research published 《 Stereoselective gem-C,B-Glycosylation via 1,2-Boronate Migration》, the research content is summarized as follows. A novel protocol is established for the long-standing challenge of stereoselective geminal bis-glycosylations of saccharides. The merger of PPh3 as a traceless glycosidic leaving group and 1,2-boronate migration enables the simultaneous introduction of C-C and C-B bonds at the anomeric stereogenic center of furanoses and pyranoses. The power of this method is showcased by a set of site-selective modifications of glycosylation products for the construction of bioactive conjugates and skeletons. A scarce metal-free 1,1-di-functionalization process of alkenes is also concomitantly demonstrated.

Product Details of C9H17BO2, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., 72824-04-5.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Ru team published research in LWT–Food Science and Technology in 2022 | 24034-73-9

Electric Literature of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 24034-73-9, formula is C20H34O, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Electric Literature of 24034-73-9

Zhao, Ru;Ben, Ailing;Wei, Mengxia;Ruan, Ming;Gu, Huiyan;Yang, Lei research published 《 Essential oil obtained from Thlaspi arvense L. leaves and seeds using microwave-assisted hydrodistillation and extraction in situ by vegetable oil and its antifungal activity against Penicillium expansum》, the research content is summarized as follows. An improved approach was developed to obtain essential oil from Thlaspi arvense L. leaves (TAL) and seeds (TAS) using microwave-assisted hydrodistillation and extraction in situ by vegetable oil. Some potential parameters that affected the yield of essential oils were systematically investigated. Under the obtained optimization conditions, the maximized yields of TAL and TAS essential oils were 0.77 ± 0.02 mg/g and 2.69 ± 0.08 mg/g, resp. The results analyzed by GC-MS revealed that the main component of TAS essential oil was allyl isothiocyanate (AITC), which accounted for 44.69% of the total essential oil content. The proportion of AITC in TAL essential oil, however, was only 9.66%. Results showed that they all had significant inhibition on P. expansum, with AITC exhibiting the greatest inhibition on P. expansum. The study of antifungal activity indicates that AITC has potential application value and broad application prospects in food preservation-related fields in the future.

Electric Literature of 24034-73-9, Geranylgeraniol is a diterpenoid that is hexadeca-2,6,10,14-tetraene substituted by methyl groups at positions 3, 7, 11 and 15 and a hydroxy group at position 1. It has a role as a plant metabolite, a volatile oil component and an antileishmanial agent. It is a diterpenoid and a polyprenol.

Geranylgeraniol, a precursor to geranylgeranylpyrophosphate, is an intermediate in the mevalonate pathway. Geranylgeraniol has been shown to prevent bone re-absorption, inhibition of osteoclast formation, and kinase activation in vitro. When working with statins, Geranylgeraniol can reduce the toxicity without inhibiting the cholesterol-producing effects. Geranylgeraniol has been documented to counteract the effects of fluvastatin by inhibiting activation of caspase-1 and production of IL-1. Additionally Geranylgeraniol has been found to induce apoptosis in HL-60 cells.
, 24034-73-9.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Nan team published research in Environmental Pollution (Oxford, United Kingdom) in 2021 | 647-42-7

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Synthetic Route of 647-42-7

In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 647-42-7, formula is C8H5F13O, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Synthetic Route of 647-42-7

Zhao, Nan;Zhao, Meirong;Liu, Weiping;Jin, Hangbiao research published 《 Atmospheric particulate represents a source of C8-C12 perfluoroalkyl carboxylates and 10:2 fluorotelomer alcohol in tree bark》, the research content is summarized as follows. In this study, we analyzed 30 legacy and emerging poly- and perfluoroalkyl substances (PFASs) in paired atm. particulate and bark samples collected around a Chinese fluorochem. manufacturing park (FMP), with the aim to explore the sources of PFASs in tree bark. The results showed that PFASs in atm. particulate and tree bark samples were consistently dominated by perfluorooctanoate (mean 73 ng/g; 44 pg/m3 ), perfluorohexanoate (47 ng/g; 36 pg/m3 ), perfluorononanoate (9.1 ng/g; 8.8 pg/m3 ), and 10:2 fluorotelomer alc. (10:2 FTOH; 5.6 ng/g; 12 pg/m3). Spatially, concentrations of C8-C12 perfluoroalkyl carboxylates (PFCAs) and 10:2 FTOH all showed a similar and exponentially decreased trend in both bark and atm. particulate samples with the increasing distance from the FMP. For the first time, we observed strongly significant (Spearmans correlation coefficient = 0.53-0.79, p < 0.01) correlations between bark and atm. particulate concentrations for C8-C12 PFCAs and 10:2 FTOH over 1-2 orders of magnitude, suggesting that the continues trapping of atm. particulates resulted in the accumulation of these compounds in bark. Overall, this study provides the first evidence that atm. particulate is an obvious source of C8-C12 PFCAs and 10:2 FTOH in tree bark. This result may further contribute to the application of tree bark as an indicator of certain PFASs in atm. particulate.

647-42-7, 3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctan-1-ol, also known as 1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol , is a useful research compound. Its molecular formula is C8H5F13O and its molecular weight is 364.1 g/mol. The purity is usually 95%.

1H,1H, 2H, 2H-Tridecafluoro-1-n-octanol is a material used to improve nanotube composites. It is also used in the synthesis of a recyclable fluorous hydrazine carbothioate compound with NCS to catalyze the acetalization of aldehydes.

1H,1H,2H,2H-Tridecafluoro-1-n-octanol is a potent and selective halogenated hydrocarbon. It binds to DNA at the dinucleotide phosphate site, which is an important site for polymerase chain reaction (PCR) activation. 1HFN has been shown to be more effective than other halogenated hydrocarbons in vitro assays on rat liver microsomes. It has been used as an additive in wastewater treatment to remove organic contaminants and metal ions. In vivo studies have been carried out in CD-1 mice to determine the effects of 1HFN on the liver and kidneys; these studies showed no toxicological effects on these organs. 1HFN also has been shown to inhibit enzymes such as cytochrome P450 and monoamine oxidase B that are involved in drug metabolism and may lead to adverse reactions with drugs metabolized by these enzymes., Synthetic Route of 647-42-7

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Mengliu team published research in Food & Function in 2022 | 527-07-1

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

In general, the hydroxyl group makes alcohols polar. 527-07-1, formula is C6H11NaO7, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Category: alcohols-buliding-blocks

Zhao, Mengliu;Cui, Wenxin;Hu, Xinzhong;Ma, Zhen research published 《 Anti-hyperlipidemic and ameliorative effects of chickpea starch and resistant starch in mice with high fat diet induced obesity are associated with their multi-scale structural characteristics》, the research content is summarized as follows. Chickpea starches were isolated from both untreated (UC-S) and conventionally cooked seeds (CC-S), and their multi-scale structural characteristics and in vivo physiol. effects on controlling hyperlipidemia in high fat diet induced obese mice were compared with their corresponding resistant starch (RS) fractions obtained by an in vitro enzymic isolation method (UC-RS and CC-RS). The degree of order/degree of double helix in Fourier transform IR spectroscopy was in the following order: CC-RS > UC-RS > CC-S > UC-S, which was consistent with the trend observed for relative crystallinity and double helix contents monitored by X-ray diffractometer and solid-state 13C cross-polarization and magic angle spinning NMR analyses. The influence of different types of chickpea starch and their corresponding resistant starch fractions on regulating the serum lipid profile, antioxidant status, and histopathol. changes in liver, colon and cecal tissues, and gene expressions associated with lipid metabolism, gut microbiota, as well as short-chain fatty acid metabolites in mice with high fat diet induced obesity was investigated. The results showed that the chickpea RS diet group exhibited overall better anti-hyperlipidemic and ameliorative effects than those of the starch group, and such effects were most pronounced in the CC-RS intervention group. After a six-week period of administration with chickpea starch and RS diets, mice in the UC-RS and CC-RS groups tended to have relatively significantly higher levels (P < 0.05) of butyric acid in their fecal contents. The 16S rRNA sequencing results revealed that mice fed with CC-RS showed the greatest abundance of Akkermansia and Lactobacillus compared with the other groups.

Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Chaoxia team published research in Journal of Hazardous Materials in 2021 | 533-73-3

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., COA of Formula: C6H6O3

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , COA of Formula: C6H6O3

Zhao, Chaoxia;Xue, Li;Zhou, Yanping;Zhang, Yi;Huang, Kama research published 《 A microwave atmospheric plasma strategy for fast and efficient degradation of aqueous p-nitrophenol》, the research content is summarized as follows. Plasma technol. has received intensive research interest in pollutants degradation However, conventional plasma generator suffers from erosion of electrodes and consequent short life time and pollution. In this work, an electrodeless high-flow microwave atm. plasma jet is developed for fast degradation of p-nitrophenol. With the assistance of injection locking technol., stable plasma is managed to be generated by low-cost magnetron. 100% removal of 100 mg/L PNP is achieved after 12 min, with a TOC removal efficiency of 57.6%. The fast degradation is probably due to the high cross section (around 153 mm2) of plasma gas. Change in the removal efficiency are less than 4% and 5% as the pH of the solution changes from 2.02 to 12.07 and conductivity varies between 5.38 x 10-2 and 43.6 mS/cm, resp. Moreover, optical emission spectroscopy spectra of the microwave plasma and a hydroxyl radical scavenger (t-butanol) are employed to identify the generated oxidizing species, which indicates that •OH is the key factor during the degradation process. The hydroxylated intermediates and organic acid transformed from PNP were revealed. Based on the examined intermediate products, the possible degradation mechanism and pathway are analyzed.

533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., COA of Formula: C6H6O3

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhao, Bin team published research in Chemical Engineering Journal (Amsterdam, Netherlands) in 2021 | 533-73-3

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 533-73-3, formula is C6H6O3, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , SDS of cas: 533-73-3

Zhao, Bin;Yu, Hongbin;Liu, Yanpeng;Lu, Ying;Fan, Wei;Qin, Weichao;Huo, Mingxin research published 《 Enhanced photoelectrocatalytic degradation of acetaminophen using a bifacial electrode of praseodymium-polyethylene glycol-PbO2//Ti//TiO2-nanotubes》, the research content is summarized as follows. A bifacial electrode-praseodymium-polyethylene glycol-PbO2//Ti//TiO2-nanotubes-was prepared for the photoelectrocatalytic degradation of acetaminophen. The physicochem. properties of the bifacial electrode (e.g. morphol., structure, light absorption, and electrochem. behavior) were systematically characterized. The effects of solution pH, electrolyte concentration, and c.d. on the removal of acetaminophen were investigated. With this bifacial electrode, approx. 97% of acetaminophen and 73% of COD could be removed in 180 min. Compared with photocatalysis and electrocatalysis alone, the photoelectrocatalytic process exhibited a higher average current efficiency and lower energy consumption. This improved performance was attributed to the enhancement of the generation of reactive oxygen species (e.g. HO· and H2O2). Addnl., the intermediates generated in photoelectrocatalytic processes were identified, and two possible degradation pathways were proposed (i.e. direct degradation by HO· attack and acetaminophen dimerization). The ECOSAR prediction based on the mol. structure of intermediates revealed that some products more toxic than parent compounds were formed during photoelectrocatalysis. The acute toxicity test results confirmed that the global toxicity of the treated solution increased in the first 60 min of treatment. Generally, identifying the intermediates and characterizing the evolution of toxicity is important in the acetaminophen-related wastewater treatment for minimizing the potential ecol. risks of effluents.

SDS of cas: 533-73-3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts

Zhang, Zhi-Qi team published research in Journal of the American Chemical Society in 2022 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Computed Properties of 72824-04-5

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 72824-04-5, formula is C9H17BO2, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. Computed Properties of 72824-04-5

Zhang, Zhi-Qi;Sang, Yue-Qian;Wang, Cheng-Qiang;Dai, Peng;Xue, Xiao-Song;Piper, Jared L.;Peng, Zhi-Hui;Ma, Jun-An;Zhang, Fa-Guang;Wu, Jie research published 《 Difluoromethylation of Unactivated Alkenes Using Freon-22 through Tertiary Amine-Borane-Triggered Halogen Atom Transfer》, the research content is summarized as follows. The application of abundant and inexpensive fluorine feedstock sources to synthesize fluorinated compounds is an appealing yet underexplored strategy. Here, authors report a photocatalytic radical hydrodifluoromethylation of unactivated alkenes with an inexpensive industrial chem., chlorodifluoromethane (ClCF2H, Freon-22). This protocol is realized by merging tertiary amine-ligated boryl radical-induced halogen atom transfer (XAT) with organophotoredox catalysis under blue light irradiation A broad scope of readily accessible alkenes featuring a variety of functional groups and drug and natural product moieties could be selectively difluoromethylated with good efficiency in a metal-free manner. Combined exptl. and computational studies suggest that the key XAT process of ClCF2H is both thermodynamically and kinetically favored over the hydrogen atom transfer pathway owing to the formation of a strong boron-chlorine (B-Cl) bond and the low-lying antibonding orbital of the carbon-chlorine (C-Cl) bond.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Computed Properties of 72824-04-5

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts