Zhang, Wei team published research in Advanced Synthesis & Catalysis in 2010 | 141699-55-0

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., HPLC of Formula: 141699-55-0

With respect to acute toxicity, simple alcohols have low acute toxicities. Doses of several milliliters are tolerated. 141699-55-0, formula is C8H15NO3, For pentanols, hexanols, octanols and longer alcohols, LD50 range from 2–5 g/kg (rats, oral). Ethanol is less acutely toxic.All alcohols are mild skin irritants. HPLC of Formula: 141699-55-0

Zhang, Wei;Tang, Weng Lin;Wang, Zunsheng;Li, Zhi research published 《 Regio- and Stereoselective Biohydroxylations with a Recombinant Escherichia coli Expressing P450pyr Monooxygenase of Sphingomonas Sp. HXN-200》, the research content is summarized as follows. A recombinant Escherichia coli expressing P 450pyr monooxygenase of Sphingomonas sp HXN-200 was developed as a useful biocatalyst for regio- and stereoselective hydroxylations, with no side reaction and easy cell growth. The resting E. coli cells showed an activity of 4.1 U/g cdw and 9.9 U/g cdw for the hydroxylation of N-benzylpyrrolidin-2-one and N-benzyloxycarbonylpyrrolidine, resp., being as active as the wide-type strain. Biohydroxylation of N-benzylpyrrolidin-2-one 1 with the resting cells gave (S)-N-benzyl-4-hydroxypyrrolidin-2-one in >99% ee and 10.8 mM, a 2.6 times increase of product concentration in comparison with the wild-type strain. Biohydroxylation of N-tert-butoxycarbonylpiperidin-2-one, N-benzylpiperidine and N-tert-butoxycarbonylazetidine with the E. coli cells afforded the corresponding 4-hydroxypiperidin-2-one, 4-hydroxypiperidine, and 3-hydroxyazetidine in 14 mM, 17 mM, and 21 mM, resp. Moreover, hydroxylation of (-)-β-pinene with the recombinant E. coli cells showed excellent regio- and stereoselectivity and gave (1R)-trans-pinocarveol in 82% yield and 4.1 mM, which is over 200 times higher than that obtained with the best biocatalytic system known thus far. The recombinant strain was also able to hydroxylate other types of substrates with unique selectivity: biohydroxylation of norbornane gave exo-norbornaeol, with exo/endo selectivity of 95%; tetralin and 6-methoxytetralin were hydroxylated at the non-activated 2-position, for the first time, with regioselectivities of 83-84%.

141699-55-0, Tert-butyl 3-hydroxyazetidine-1-carboxylate is a useful research compound. Its molecular formula is C8H15NO3 and its molecular weight is 173.21 g/mol. The purity is usually 95%.

Tert-butyl 3-hydroxyazetidine-1-carboxylate has been shown to be a good substrate for the preparation of N-protected amino alcohols and amines by the process of reductive amination. In this synthesis, tert-butyl azetidinium chloride is used as a catalyst in the reaction with sodium hydroxide. The tert-butyl group can be removed using ammonium hydroxide in the presence of a base such as triethylamine. This reaction can be performed on a large scale, making it useful in the manufacture of pharmaceuticals. The efficiency and solubility of this process make it suitable for use as an introduction to other processes involving N-protected amino alcohols or amines., HPLC of Formula: 141699-55-0

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts