In general, the hydroxyl group makes alcohols polar. 533-73-3, formula is C6H6O3, Because of hydrogen bonding, alcohols tend to have higher boiling points than comparable hydrocarbons and ethers. Application of C6H6O3
Yu, Xiaoyong;Wang, Lijing;Wang, Xin;Liu, Hongzhi;Wang, Ziyuan;Huang, Yixuan;Shan, Guoqiang;Wang, Weichao;Zhu, Lingyan research published 《 Enhanced nonradical catalytic oxidation by encapsulating cobalt into nitrogen doped graphene: highlight on interfacial interactions》, the research content is summarized as follows. Supported metal catalysts are widely used for heterogeneous catalytic processes (e.g., Fenton-like reaction), but the mechanisms of interfacial processes are still ambiguous. Herein, unique nanocarbon based catalysts with Co nanoparticles encapsulated in nitrogen (N)-doped graphene (Co@NG) were prepared by calcination of Co based metal-organic frameworks (MOFs), which showed excellent catalytic performance for peroxymonosulfate (PMS) activation. Comprehensive characterization revealed that there were strong interfacial interactions between Co and the NG layer due to the presence of special nitrogen species, especially graphitic-N. D. functional theory calculations suggested that the strong interfacial interactions provided optimal active sites with low adsorption energy (-1.99 eV) for PMS accumulation, which enabled the generation of highly oxidizing NG-PMS* intermediates as evidenced by in situ Raman microscopy. Electrochem. analyses revealed that the interfacial interactions facilitated surface-to-surface electronic communication across at. interface-bonding (N-Co). Consequently, phenol was quickly degraded by the NG-PMS* via direct oxidation by an anodic-like nonradical process, and reasonable graphitic-N (G-N) content and pore size are important for this process. Phenol at 1 mM was completely removed within only 12 min by Co@NG-900 (which was prepared at 900°C), with an apparent rate constant 20 times higher than that of pure NG-900. This work sheds new insights on the critical role of interfacial interactions in nonradical PMS activation.
Application of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts