Yu, Liyang team published research in Chemistry of Materials in 2021 | 72824-04-5

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 72824-04-5, formula is C9H17BO2, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Yu, Liyang;Zhang, Meiling;Tang, Jie;Li, Ruipeng;Xu, Xiaopeng;Peng, Qiang research published 《 Wide Bandgap Perylene Diimide Derivatives as an Effective Third Component for Parallel Connected Ternary Blend Polymer Solar Cells》, the research content is summarized as follows. Constructing a ternary blend active layer for polymer solar cells (PSCs) is a widely explored approach to achieve a high power conversion efficiency (PCE). To achieve this, multiple approaches have been explored for dual-acceptor PSCs including acceptor alloy and acceptor cascade. Parallel connection is another working mechanism of ternary blends with the advantage of large freedom in the selection of materials with largely different absorption ranges. Here, we purposely designed two propeller-like perylene diimide (PDI) derivatives, TT-PDI and TZ-PDI, with different central cores and selected one as the third component to be added into a PM6:Y6 blend. The highest PCE of 17.52% was obtained with 10% of Y6 replaced by TZ-PDI in the ternary blend. To our knowledge, this is the first report of a PDI derivative to be added into a PM6:Y6 blend with significantly increased device performance. The improved PCE was ascribed to the high photon absorption due to the wide bandgap and amorphous structure of TZ-PDI, which paved a functional parallel charge generation route without interfering with the nanostructure of the PM6:Y6 blend. This work demonstrated the parallel connected ternary blend as a viable route to construct efficient PSCs and a chem. designing strategy for a suitable third component in ternary blends.

72824-04-5, Allylboronic acid pinacol ester is a useful research compound. Its molecular formula is C9H17BO2 and its molecular weight is 168.04 g/mol. The purity is usually 95%.
Allylboronic acid pinacol ester is an allylation reagent that is used to produce aldehydes from ketones. It reacts with water, yielding the desired product and formaldehyde as a byproduct. The reaction proceeds through a sequence of steps, in which the boronate ester first reacts with water to form an allylboronate ion and hydrogen gas. This intermediate then reacts with potassium t-butoxide to produce the desired allyl alcohol and potassium borohydride. Finally, the palladium complex catalyst reduces the carbonyl group of the starting material, converting it into an aldehyde. Allylboronic acid pinacol ester is commercially available as a white solid, but can also be synthesized from 2-chloro-5-pinacolylborane (pinacol) in high yield using catalytic cross coupling reactions., Recommanded Product: 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts