Some low molecular weight alcohols of industrial importance are produced by the addition of water to alkenes. 533-73-3, formula is C6H6O3, Ethanol, isopropanol, 2-butanol, and tert-butanol are produced by this general method. Two implementations are employed, the direct and indirect methods. Product Details of C6H6O3
Yan, Zhifeng;Lian, Jie;Feng, Yu;Li, Miaoting;Long, Feng;Cheng, Ruoqian;Shi, Sheng;Guo, Hong;Lu, Jianjun research published 《 A mechanistic insight into glucose conversion in subcritical water: Complex reaction network and the effects of acid-base catalysis》, the research content is summarized as follows. Based on the concept of system thinking and system design, a systematically mechanistic network of glucose conversion toward fructose, 5-hydroxymethyl furfural, 1,6-anhydroglucose, 1,2,4-Benzenetriol, levulinic acid, furfural, erythrose, glyceraldehyde, dihydroxyacetone, pyruvaldehyde, lactic acid, glycolaldehyde in subcritical water were performed by employing dispersion-corrected d. functional theory. Fukui functions results predict the most highest reactivity of O(5) of glucose to suffer protonation in subcritical water, which may readily lead to the formation of 1,6-anhydroglucose or fructose with the comparable apparent activation energies (29.441 vs 29.305 kcal/mol). Further dehydration of monosaccharide to 5-HMF is more favorable via cyclic pathway for fructose in comparison to the acyclic pathway for glucose. The formation of levulinic acid has an apparent activation energy of 33.321 kcal/mol but the rate is limited by the numerous steps. The consumption of 5-HMF to 1,2,4-Benzenetriol exhibits a high activation energy of 76.682 kcal/mol. Retro-aldol condensation of C4 compounds prefer to give C2 rather than C3 compounds The thermodn. results involving the generation of C2, C3 and C4 compounds by retro-aldol condensation of open-chain C6 intermediates agree with the exptl. product distribution and reactivity over temperature at the initial stage of glucose or fructose subcritical hydrolysis. Furthermore, the assistance of H+ may be responsible for the isomerization and retro-aldol condensation in glucose conversion. This comprehensive reaction network provides a fundamental understanding and deeper insight into glucose conversion, which reasonably explains exptl. activity and selectivity reported for glucose and fructose conversion in subcritical water.
Product Details of C6H6O3, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts