In general, the hydroxyl group makes alcohols polar. Those groups can form hydrogen bonds to one another and to most other compounds. 533-73-3, formula is C6H6O3, Owing to the presence of the polar OH alcohols are more water-soluble than simple hydrocarbons. Methanol, ethanol, and propanol are miscible in water. Butanol, with a four-carbon chain, is moderately soluble. Name: Benzene-1,2,4-triol
Xu, Dengfeng;Wang, Shaokang;Feng, Meiyuan;Shete, Varsha;Chu, Yifang;Kamil, Alison;Yang, Chao;Liu, Hechun;Xia, Hui;Wang, Xin;Sun, Guiju;Yang, Yuexin research published 《 Serum Metabolomics Reveals Underlying Mechanisms of Cholesterol-Lowering Effects of Oat Consumption: A Randomized Controlled Trial in a Mildly Hypercholesterolemic Population》, the research content is summarized as follows. The purpose of this study is to examine the effects of oat supplementation on serum lipid in a population of adults with mild hypercholesterolemia and reveal the underlying mechanisms with serum untargeted metabolomics. In this placebo-controlled trial, 62 participants from Nanjing, China, with mild elevations in cholesterol are randomly assigned to receive 80 g oats (containing 3 g beta-glucan) or rice daily for 45 days. Fasting blood samples are collected at the beginning, middle, and end of the trial. Compared with the rice group, oat consumption significantly decreases serum total cholesterol (TC) (-8.41%, p = 0.005), low-d. lipoprotein cholesterol (LDL-c) (-13.93%, p = 0.001), and non high-d. lipoprotein cholesterol (non-HDL-c) (-10.93%, p = 0.017) levels. There are no significant between-group differences in serum triglyceride (TG), apolipoprotein B (Apo B), glycated albumin, or fasting blood glucose levels. An orthogonal partial least squares discriminant anal. (OPLS-DA) suggests a clear separation in metabolic profiles between the groups after the intervention. Twenty-one metabolites in the oat group are significantly different from those in the rice group, among which 14 metabolites show a decreased trend. In comparison, seven metabolites show an increased trend. Correlations anal. from both groups indicate that most metabolites [e.g., sphinganine and phosphatidylcholine (PC)(20:5(5Z,8Z,11Z,14Z,17Z)/20:1(11Z))] have pos. correlations with serum cholesterol levels. Kyoto Encyclopedia of Gene and Genomes pathway anal. suggests that oat consumption regulated glycerophospholipid, alanine, aspartate and glutamate, sphingolipid, and retinol metabolism Oat consumption has beneficial effects on serum lipids profiles. The underlying mechanisms involve glycerophospholipid, alanine, aspartate and glutamate, sphingolipid, and retinol metabolism in adults.
Name: Benzene-1,2,4-triol, Benzene-1, 2, 4-triol, also known as hydroxyhydroquinone or 1, 2, 4-benzenetriol, belongs to the class of organic compounds known as hydroxyquinols and derivatives. Hydroxyquinols and derivatives are compounds containing a 1, 2, 4-trihydroxybenzene moiety. Benzene-1, 2, 4-triol is soluble (in water) and a very weakly acidic compound (based on its pKa). Outside of the human body, benzene-1, 2, 4-triol can be found in tea. This makes benzene-1, 2, 4-triol a potential biomarker for the consumption of this food product.
Benzene-1,2,4-triol is a benzenetriol carrying hydroxy groups at positions 1, 2 and 4. It has a role as a mouse metabolite.
1,2,4-Benzenetriol is a metabolite of benzene.
1,2,4-Benzenetriol is an intermediary metabolite of benzene that is present in roasted coffee beans. It is mutagenic and it causes cleaving of DNA single strands by the generation of reactive oxygen species.
1,2,4-Benzenetriol is a reactive molecule that has been shown to have hydrogen bonding interactions with copper chloride. It has been proposed as an inhibitor of methyltransferase, which is involved in the synthesis of methionine. Studies have shown that 1,2,4-Benzenetriol can also inhibit iron homeostasis and transfer reactions. The x-ray diffraction data for this compound shows that it forms a complex with the hydroxyl group. This complex is stabilized by hydrogen bonding interactions with the hydroxylic proton of the 1,2,4-benzenetriol molecule. 1,2,4-Benzenetriol has been shown to be toxic to HL-60 cells and K562 cells at concentrations greater than 5 mM. It has also been found to be effective against chlorogenic acids and other compounds in energy metabolism studies at concentrations between 0.5 and 2 mM., 533-73-3.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts