Simple alcohols are found widely in nature. Ethanol is the most prominent because it is the product of fermentation, a major energy-producing pathway. 527-07-1, formula is C6H11NaO7, Other simple alcohols, chiefly fusel alcohols, are formed in only trace amounts. More complex alcohols however are pervasive, as manifested in sugars, some amino acids, and fatty acids. , Category: alcohols-buliding-blocks
Wang, Yuxin;Guan, Linlin;He, Zhen;Zhang, Shengping;Singh, Harshpreet;Hayat, Muhammad Dilawer;Yao, Caizhen research published 《 Influence of pretreatments on physicochemical properties of Ni-P coatings electrodeposited on aluminum alloy》, the research content is summarized as follows. Aluminum often requires protective coatings to prevent corrosion. The aluminum alloy substrate usually needs pretreatment to minimize, stabilize or convert the surface oxide in order to achieve adequate coating adhesion. The electrodeposited Ni-P coating is a promising candidate as a protective coating due to its easy fabrication and excellent performance. This study comprehensively investigates the pretreatment of zincating and anodizing on 6061 aluminum alloy, and systematically discusses their influence on the electrodeposited Ni-P coatings. The crystal structure and elemental composition were investigated for interlayers and Ni-P coatings subsequently, while morphologies of the coating surface and cross-section were also determined The results revealed similar phase composition for differently pretreated Ni-P coatings, while distinct nodule featured morphol. was observed for anodized Ni-P coating. It was found that anodized Ni-P coatings had the best performance due to its superior coating adhesion, wear-resistance, and corrosion resistance. In contrast, severe wear damage was occurred to zincated Ni-P coatings due to its inferior microstructure and weak zinc interlayer. Lastly, the influence of anodizing pretreatment on the coating microstructure is discussed, and a model is proposed for Ni-P electrodeposition employing anodizing pretreatment.
Category: alcohols-buliding-blocks, Sodium Gluconate is the sodium salt of gluconic acid with chelating property. Sodium gluconate chelates and forms stable complexes with various ions, preventing them from engaging in chemical reactions.
Sodium gluconate is an organic sodium salt having D-gluconate as the counterion. It has a role as a chelator. It contains a D-gluconate.
D-Gluconic acid sodium salt is a glycol ether that is used as an injection solution. It has been shown to have antibacterial efficacy against wild-type strains of bacteria such as Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The in vitro antimicrobial action of D-gluconic acid sodium salt was found to be due to its ability to inhibit bacterial growth by interfering with the synthesis of DNA. D-gluconic acid sodium salt also has been shown to have antihypertensive effects in rats through the inhibition of angiotensin II type 1 receptor (AT1) signaling pathway and erythrocyte proliferation. This drug also has been shown to bind benzalkonium chloride and x-ray diffraction data show that it is crystalline in nature. The analytical method for determining the concentration of D-gluconic acid sodium salt is by electrochemical impedance, 527-07-1.
Referemce:
Alcohol – Wikipedia,
Alcohols – Chemistry LibreTexts